Electromagnetic and Microwave Absorption of Nanocrystalline Alloy Fe0.2(Co0.2Ni0.8)0.8 and Nanocomposite SrFe12O19/Ni0.5Zn0.5Fe2O4 Microfibers

Article Preview

Abstract:

Magnetic nanocrystalline alloy Fe0.2(Co0.2Ni0.8)0.8 microfibers and nanocomposite SrFe12O19/Ni0.5Zn0.5Fe2O4 microfibers are used as the absorbents in the double-layer structure for microwave absorption. The double-layer absorbers with a total thickness of 2 mm consisting of Fe0.2(Co0.2Ni0.8)0.8 and nanocomposite SrFe12O19/Ni0.5Zn0.5Fe2O4 microfibers are designed, and their microwave absorption properties are predicted based on the electromagnetic parameter measurements. The results show that the double-layer absorber with the absorption layer of SrFe12O19/Ni0.5Zn0.5Fe2O4 microfibers and the thickness of 0.6 mm has the best microwave absorption properties, with the bandwidth ( the reflection loss less than −10 dB) of 7.3 GHz ranging from 10.7 GHz to 18 GHz, and the maximum reflection loss of −71.4 dB at 12.1 GHz.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

355-360

Citation:

Online since:

October 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] H. J. Wu, l. D. Wang, S. L. Guo, Y. M. Wang and Z. Y. Shen, Mater. Chem. Phys. 113 (2012) 965-970.

Google Scholar

[2] A. Ghasemi, A. Hossienpour, A. Morisako, A. Saatchi and M. Salehi, J. Magn. Magn. Mater. 302 (2006) 429-435.

Google Scholar

[3] Y. B. Feng and T. Tai, J. Alloys Compd. 513 (2012) 455-459.

Google Scholar

[4] Z. Ma, C. T. Cao, J. Yuan, Q. F. Liu and J. B. Wang, Appl. Surf. Sci. 258 (2012) 7556-7561.

Google Scholar

[5] I. Choi, J. G. Kim, I. S. Seo and D. G. Lee, Comp. Struct. 94 (2012) 3002-3008.

Google Scholar

[6] F. Luo, D. M. Zhu and W. C. Zhou, Ceram. Int. 33 (2007) 197-200.

Google Scholar

[7] J. J. Kim and S. S. Kim, Mater. Des. 31 (2010) 1547-1552.

Google Scholar

[8] X. Q. Shen, H. B. Liu, Z. Wang, X. Y. Qian, M. X. Jing and X. C. Yang, Chin. Phys. B. 23 (2014) 078101.

Google Scholar

[9] F. Z. Song, X. Q. Shen, J. Xiang and H. J. Song, Mater. Chem. Phys. 120 (2010) 7213-216.

Google Scholar

[10] X. Q. Shen, L. P. Guo, M. Q. Liu, F. Z. Song and C. Y. Wei, Mater. Lett. 65 (2011) 2841-2843.

Google Scholar

[11] G. Z. Shen, M. Xu and Z. Xu, Mater. Chem. Phys. 105 (2007) 268-272.

Google Scholar

[12] C. Wang, R. T. Lv, Z. H. Huang, F. Y. Kang and J. L. Gu, J. Alloys Compd. 509 (2011) 494-498.

Google Scholar

[13] G.V. Kurlyandskaya, S. M. Bhagat, S. E. Jacobo, J. C. Aphesteguy and N. N. Schegoleva, J. Phys. Chem. Solids. 72 (2011) 276-285.

DOI: 10.1016/j.jpcs.2011.01.002

Google Scholar

[14] F. Z. Song, X. Q. Shen, M. Q. Liu and J. Xiang, J. Colloid Interface Sci. 354 (2011) 413-416.

Google Scholar

[15] M. Zhou, X. Zhang, L. Wang, J. M. Wang, L. Wang, K. W. Zhu and B. X. Feng, Mater. Chem. Phys. 130 (2011) 1191-1194.

Google Scholar