Effect of Annealing Temperature on Structural and Optical Properties of Ceria Nano Particles

Article Preview

Abstract:

Pure and single-phase ceria particles were synthesized by an anodic electrochemical method followed by annealing at 500-900°C for 2h. Many characterization methods have been used to study the ceria nanostructures and electronic structures, including X-ray diffraction, transition electron microscopy and UV-vis spectrophotometer. The average crystallite size was estimated to be the scale of nanometers. While annealing at a low temperature, ceria particles are a little agglomeration and are termed as mesocrystal. It is observed to increase the crystallite size in addition to increase the crystalliminty of the nanoparticles while increasing the annealing temperature. The absorption spectra show that the ceria nanoparticles have direct and indirect band gap structures. There is a red shift of the absorption peak for the particles after annealing. Both the direct and indirect band gap energies are found to decrease with the annealing temperature.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

366-372

Citation:

Online since:

October 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] B.B. Patil, S.H. Pawar, Structural, Morphological and electrical properties of spray deposited nano-crystalline CeO2 thin films, J. Alloy. Compd. 509 (2011) 414-420.

DOI: 10.1016/j.jallcom.2010.09.045

Google Scholar

[2] F.J. Chen, Y.L. Cao, D.Z. Jia, Preparation and photocatalytic property of CeO2 lamellar, Appl. Surf. Sci. 257 (2011) 9226-9231.

DOI: 10.1016/j.apsusc.2011.06.009

Google Scholar

[3] I.W. Park, J.L. Lin, J.J. Moore, M. Khafizov, D. Hurley, M.V. Manuel, T. Allen, Grain growth and mechanical properties of CeO2-x films deposited on Si(100) substrates by pulsed dc magnetron sputtering, Surf. Coat. Tech. 217 (2013) 34-38.

DOI: 10.1016/j.surfcoat.2012.11.068

Google Scholar

[4] V. Fernandes, I.L. Graff, J. Varalda, L. Amaral, P. Fichtner, D. Demaille, Y. Zheng, W.H. Schreiner, D.H. Mosca, Valence Evaluation of Cerium in Nanocrystalline CeO2 Films Electrodeposited on Si Substrates, J. Electrochem. Soc. 159 (2012) K27-K33.

DOI: 10.1149/2.056201jes

Google Scholar

[5] W.P. Hsu, L. Roonquist, E. Matijevic, Preparation and properties of monodispersed colloidal particles of Lanthanide compounds cerium(IV), Langmuir, 4(1988) 31.

DOI: 10.1021/la00079a005

Google Scholar

[6] M. Xu, S.L. Xie, X.H. Lu, Z.Q. Liu, Y.Y. Huang, Y.F. Zhao, J.Q. Ye, Y.X. Tong, Controllable Electrochemical Synthesis and Photocatalytic Activity of CeO2 Octahedra and Nanotubes, J. Electrochem. Soc, . 158(2011) E41-44.

DOI: 10.1149/1.3559138

Google Scholar

[7] Y.X. Li, X.Z. Zhou, Y. Wang, X.Z. You, Preparation of nano-sized CeO2 by mechanochemical reaction of cerium carbonate with sodium hydroxide Mater. Lett. 58 (2004), 245-249.

DOI: 10.1016/s0167-577x(03)00454-3

Google Scholar

[8] X.W. Lu, X.H. Li, F. Chen, C.Y. Ni and Z.G. Chen, Hydrothermal synthesis of prism-like mesocrystal CeO2, J. Alloy. Compd. 476 (2009) 958-962.

DOI: 10.1016/j.jallcom.2008.09.198

Google Scholar

[9] Y. Zhou, R.J. Philips, J.A. Switzer, Electrochemical synthesis and sintering of nanocrystalline cerium(IV) oxide powders, J. Am. Ceram. Soc. 78 (1995) 981-85.

DOI: 10.1111/j.1151-2916.1995.tb08425.x

Google Scholar

[10] B. Djuricic, S. Pickering, Nanostructured Cerium Oxide: Preparation and Properties of Weakly-agglomerated Powders, J. Eur. Ceram. Soc. 19 (1999) 1925-(1934).

DOI: 10.1016/s0955-2219(99)00006-0

Google Scholar

[11] E. Verdon, M. Devalette, G. Demazeau, Solvothermal synthesis of cerium dioxide microcrystallites: effect of the solvent, Mater. Lett. 25 (1995) 127-131.

DOI: 10.1016/0167-577x(95)00161-1

Google Scholar

[12] S.Y. Chen, Y.H. Lu, T.W. Huang, D.C. Yan, C.L. Dong, Oxygen Vacancy Dependent Magnetism of CeO2 Nanoparticles Prepared by Thermal Decomposition Method, J. Phys. Chem. C 114 (2010), 19576-19581.

DOI: 10.1021/jp1045172

Google Scholar

[13] M. Yan, W. Wei, S. He, N. Zuoren, Preparation and morphology of nano-size ceria by a stripping precipitation using oxalic acid as a precipitating agent, J. Rare Earth. 30 (2012) 1265-1268.

DOI: 10.1016/s1002-0721(12)60218-x

Google Scholar

[14] N.K. Renuka, A.K. Praveen, C.U. Aniz, Ceria rhombic microplates: Synthesis, characterization and catalytic activity, Microporous and Mesoporous Materials, 169 (2013) 35-41.

DOI: 10.1016/j.micromeso.2012.10.010

Google Scholar

[15] P. Bocchetta, M. Santamaria, F.D. Quarto, Electrodeposition of Supported Gadolinium-Doped Ceria Solid Solution Nanowires, J. Electrochem. Soc., 159 (2012) E108-E114.

DOI: 10.1149/2.005206jes

Google Scholar

[16] E. Mercadelli, G. Ghetti, A. Sanson, R. Bonelli, S Albonetti, Synthesis of CeO2 nano-aggregates of complex morphology, Ceram. Int. 39 (2013) 629-634.

DOI: 10.1016/j.ceramint.2012.06.074

Google Scholar

[17] F. Meng, L.N. Wang, J.B. Cui, Controllable synthesis and optical properties of nano-CeO2 via a facile hydrothermal route, J. Alloy. Compd Vol. 556 (2013) 102-108.

DOI: 10.1016/j.jallcom.2012.12.096

Google Scholar

[18] P. Stefanov, G. Atanasova, D Stoychev, M. Ts, Electrochemical deposition of CeO2 on ZrO2 and Al2O3 thin films formed on stainless steel, Surf. Coat. Technol. 180- 181 (2004) 446-449.

DOI: 10.1016/j.surfcoat.2003.10.083

Google Scholar

[19] T. Dhannia, S. Jayalekshmi, M. C. SanthoshKumar, T. PrasadaRao, A. Chandra Bose, Effect of aluminium doping and annealing on structural and optical properties of cerium oxide nanocrystals, Journal of Physics and Chemistry of Solids, 70 (2009).

DOI: 10.1016/j.jpcs.2009.09.001

Google Scholar

[20] M. Niederberger, H. Colfen, Oriented attachment and mesocrystals: Non-classical crystallization mechanisms based on nanoparticle assembly, Phys. Chem. Chem. Phys. 8 (2006) 3271-3287.

DOI: 10.1039/b604589h

Google Scholar

[21] S. Saravanakumar, S. Sasikumar, S. Israel, G.R. Pradhiba, R. Saravanan, Structural, magnetic and charge-related properties of nano-sized cerium manganese oxide, a dilute magnetic oxide semiconductor, Materials Science in Semiconductor Processing, 17 (2014).

DOI: 10.1016/j.mssp.2013.10.002

Google Scholar

[22] F. Marabelli, P. Wachter, Covalent insulator CeO2: Optical reflectivity measurements, Phys. Rev. B 36 (1987) 1238-1243.

Google Scholar

[23] S. Sathyamurthy, K.J. Leonard, R.T. Dabestani, M.P. Paranthaman, Reverse micellar synthesis of cerium oxide Nanoparticles, Nanotechnology16 (2005) 1960-(1964).

DOI: 10.1088/0957-4484/16/9/089

Google Scholar

[24] A.A. Ansari, Optical and structural properties of sol-gel derived nanostructured CeO2 film, Journal of semiconductors, 31 (2010) 053001.

DOI: 10.1088/1674-4926/31/5/053001

Google Scholar