Effect of Nano TiO2 Coating on Electrochemical Performance of the Li1.2Mn0.6Ni0.2O2 Cathode Materials

Article Preview

Abstract:

In this paper, a Li-rich cathode material Li1.2Mn0.6Ni0.2O2 is modified by the nanoscale TiO2 coating using a simple and controllable hydrolyzation method. The effect of nanoscale TiO2 coating on the bulk structure, surface morphology and electrochemical performance are characterized by X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM) and electrochemical techniques, respectively. The results show that the nanosize TiO2 can be well coated on the surface of the cathode material. The coating layers have no influence on the bulk structure of the cathode material, while they can improve the initial discharge capacity, columbic efficiency and cycling performance.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

361-365

Citation:

Online since:

October 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Mukerjee, K. M. Abraham, J. Electrochem. Soc. 161 (2014) A355-A363.

Google Scholar

[2] F. Li, S.X. Zhao, Y.C. Wang, K.Z. Wang, B.H. Li, C.W. Nan, J. Electrochem. Soc. 161(2014) A102-A108.

Google Scholar

[3] B. Qiu, J. Wang, Y.G. Xia, Y.Z. Liu, L.F. Qin, X.Y. Yao, Z.P. Liu, J. Power Sources 240 (2013) 530-535.

Google Scholar

[4] Y.P. Chen, Y. Zhang, B.J. Chen, Z.Y. Wang, C. Lu, J. Power Sources 256 (2014) 20-27.

Google Scholar

[5] S.T. Myung, K. Izumi, S. Komaba, Y.K. Sun, H. Yashiro, N. Kumagai, Chem. Mater. 17 (2005) 3695-3704.

Google Scholar

[6] G. Singh, R. Thomas, A. Kumar, R.S. Katiyar, A. Manivannan, J. Electrochem. Soc. 159 (2012) 470-478.

Google Scholar

[7] E.S. Han, Y.P. Li, L.Z. Zhu, L. Zhao, Solid State Ionics 255 (2014) 113-119.

Google Scholar

[8] Z.Y. Wang, E.Z. Liu, L.C. Guo, C.S. Shi, C.N. He, J.J. Li, N.Q. Zhao, Surf. Coat. Technol. 235 (2013) 570-576.

Google Scholar

[9] J.M. Zheng, J. Li, Z.R. Zhang, X.J. Guo, Y. Yang, Solid State Ionics 179 (2008) 1794-1799.

Google Scholar

[10] F.Q. Cheng Y.L. Xin, J.T. Chen, L. Lu, X.X. Zhang, H.H. Zhou, J. Mater. Chem. 1 (2013) 5301-5308.

Google Scholar

[11] D.P. Wang , I. Belharouak , G.W. Zhou , K. Amine, Adv. Funct. Mater. 23 (2013) 1070-1075.

Google Scholar

[12] J.M. Zheng, W. Shi, M. Gu, J. Xiao, P.J. Zuo, C. M Wang, J.G. Zhang, J. Electrochem. Soc. 160 (2013) A2212-A2219.

Google Scholar

[13] H.J. Yu, H.S. Zhou, J. Mater. Chem. 22 (2012) 15507-15510.

Google Scholar

[14] A.R. Armstrong, M. Holzapfel, P. Novak, J. Am. Chem. Soc. 128 (2006) 8694-8698.

Google Scholar

[15] F. Wu, M. Wang, Y. Su, S. Chen, B. Xu, J. Power Sources 191 (2009) 628-632.

Google Scholar

[16] W. Liu, W.G. Miao, X.L. Gao, W.D. Zhang, J.T. Chen, H.H. Zhou, X.X. Zhang, J. Alloys Compd. 543 (2012) 181-188.

Google Scholar

[17] S.J. Shi, J.P. Tu, Y.Y. Tang, X.Y. Liu, Y.Q. Zhang, X.L. Wang, C.D. Gu, Electrochim. Acta 88 (2013) 671-679.

Google Scholar