Effect of Heat Treatment on the Photocatalytic Activity of TiO2 Thin Films Fabricated on Ti-6Al-4V Alloy

Article Preview

Abstract:

The self-organized oxide nanotube/pore layers were prepared by anodization on ternary Ti-6Al-4V alloys. The morphologies and structures of layers under different heat treatment tempreture were characterized by means of SEM, XRD, XPS and Raman spectroscopy and DRS. The effects of alloying element under different heat treatment tempreture on the structure, composition and opsorption property of the film catalysts were investigated along with their inherent relationships. The results show that two kinds of Ti-Al-V-O nanostructure grown inthe α and β phase region formed on the surface of the alloy. V doped-TiO2 can inhibit the formation of anatase. The films show the microcrystalline structure of anatase and rutile and a small amount of V2O5 on the surface of film annealed at 400 oC. Moreover, the large surface and the synergy effect of V-doped TiO2 and V2O5 make sample show the highest photocatalytic activity for the photocatalytic hydrogen evolution.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

349-354

Citation:

Online since:

October 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] P. Roy, S. Berger, P. Schmuki, Angew. Chem. Int. Ed. 50 (2011), 2904-2940.

Google Scholar

[2] A. Zaleska, J.W. Sobczak, E. Grabowska, Appl. Catal. B Environ. 78 (2008), 92-100.

Google Scholar

[3] H.C. Liang, X.Z. Li, Appl. Catal. B Environ. 86 (2008), 8-17.

Google Scholar

[4] C.L. Wang, L. Sun, H. Yun, J. Li, Y.K. Lai, C.J. Lin, Nanotechnology 20 (2009), 295601.

Google Scholar

[5] D.L. Gomathi, M.B. Narasimha, K.S. Girish, J. Mol. Catal. A: Chem. 308 (2009), 174-181.

Google Scholar

[6] R. Dholam, N. Patel, M. Adami, A. Miotello, Int. J. Hydrogen Energy 34 (2009), 5337-5346.

Google Scholar

[7] K. Das, S.N. Sharma, M. Kumar, S.K. De, J. Phys. Chem. C 113 (2009), 14783-14792.

Google Scholar

[8] C.M. Visinescu, R. Sanjines, F. Levy, V.I. Parvulescu, Appl. Catal. B 60 (2005), 155-162.

Google Scholar

[9] D. L. Gomathi, M.B. Narasimha, K.S. Girish, Mater. Sci. Eng., B 166 (2010), 1–6.

Google Scholar

[10] A. Trenczek-Zajac, M. Radecka, M. Jasinski, K.A. Michalow, M. Rekas, E. Kusior, K. Zakrzewska, A. Heel, T. Graule, K. Kowalski, J. Power Sources 194 (2009), 104-111.

DOI: 10.1016/j.jpowsour.2009.02.068

Google Scholar

[11] A. Ghicov, M. Yamamoto, P. Schmuki, Angew. Chem. 120 (2008), 8052-8055.

Google Scholar

[12] Y.C. Nah, A. Ghicov, D. Kim, S. Berger, P. Schmuki: J. Am. Chem. Soc. 130 (2008), 16154-16155.

DOI: 10.1021/ja807106y

Google Scholar

[13] N.K. Shrestha, Y.C. Nah, H. Tsuchiya, P. Schmuki, Chem. Commun. 15 (2009), 2008-(2010).

Google Scholar

[14] F.Z. Jia, Z.P. Yao, Z.H. Jiang, C.X. Li, Catal. Commun. 12 (2011), 497-501.

Google Scholar

[15] L.Q. Jing, B.F. Xin, F.L. Yuan, L.P. Xue, B.Q. Wang, H.G. Fu, J. Phys. Chem. B 110 (2006), 17860-17865.

Google Scholar