Study of Nucleation of CVD Diamond by DC Arcjet Method

Article Preview

Abstract:

Arcjet plasma enhanced CVD was used to grow diamond. Nucleation of diamond was studied at the early stage of growth cause. The micro-structural probes (transmission electron microscope (TEM), high resolution electronic microscope (HREM), selected area diffraction (SAD) and electron energy loss spectra (EELS) were used to characterize the nuclei. It was found that nuclei formed following the amorphous carbon formation. The critical nucleus size was deduced to be less than 20 nm. The growth of nucleus would form the network-like structure. The incubation period of nucleation was deduced as 6–8min under the condition of high concentration of CH4 in H2.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

396-400

Citation:

Online since:

October 2014

Keywords:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J.C. Angus, C.C. Hayman, Science 241 (1988) 913.

Google Scholar

[2] X. Jiang, C.L. Jia, Phys. Rev. Lett. 84 (2000) 3658.

Google Scholar

[3] S.T. Lee, H.Y. Peng, X.T. Zhou, N. Wang, C.S. Lee, I. Bello, Y. Lifshitz, Science 287 (2000) 104.

Google Scholar

[4] Y. Lifshitz, Th. Kohler, Th. Frauenheim, I. Guzmann, A. Hoffman, R.Q. Zhang, X.T. Zhou, S.T. Lee, Science 297 (2002) 1531.

Google Scholar

[5] P. Ascarelli, S. Fontana, Appl. Surf. Sci. 64 (1993) 307.

Google Scholar

[6] X. Jiang, C. -P. Klages, R. Zachai, M. Hartweg, H. -J. Fusser, Appl. Phys. Lett. 62 (1993) 3438.

Google Scholar

[7] S. Yugo, T. Kania, T. Kimura, T. Muto, Appl. Phys. Lett. 58 (1991) 1036.

Google Scholar

[8] F. Le Normand, J.C. Arnault, V. Parasote, L. Fayette, B. Marcus, M. Mermoux, J. Appl. Phys. 80 (1996) 1830.

DOI: 10.1063/1.362995

Google Scholar

[9] H. Buchkremer-Hermanns, G. Kohlschein, H. Ren, H. Weiß, Surf. Coat. Technol. 98 (1998) 1038.

Google Scholar

[10] B. Hong, M. Wakagi, W. Drawl, R. Messier, R.W. Collins, Phys. Rev. Lett. 75 (1995) 1122.

Google Scholar

[11] K. Teii, M. Hori, T. Goto, J. Appl. Phys. 95 (2004) 4463.

Google Scholar

[12] Sz. Katai, Z. Tass, L. Bori, Gy. Hars, P. Deak, Vacuum 56 (2000) 39.

Google Scholar

[13] S. Barrat, P. Pigeat, I. Dieguez, E. Bauer-Grosse, B. Weber, Thin Solid Films 304 (1997) 98.

DOI: 10.1016/s0040-6090(97)00171-5

Google Scholar

[14] S. Roy, J. DuBois, R.P. Lucht, N.G. Glumac, Combust. Flame 138 (2004) 285.

Google Scholar

[15] S. Koizumi, K. Watanabe, F. Hasegawa, H. Kanda, Science 292 (2001) 1899.

Google Scholar

[16] S.A. Catledgea, P. Bakera, J.T. Tarvinb, Y.K. Vohra, Diamond Relat. Mater. 9 (2000) 1512.

Google Scholar

[17] S. Takeuchi, S. Oda, M. Murakawa, Thin Solid Films 398–399 (2001) 238.

Google Scholar

[18] N. Jiang, K. Sugimoto, K. Nishimura, Y. Shintani, A. Hiraki, J. Cryst. Growth 242 (2002) 362.

Google Scholar

[19] H.W. Xin, Z.M. Zhang, X. Ling, Z.L. Xi, H.S. Shen, Y.B. Dai, Y.Z. Wan, Diamond Relat. Mater. 11 (2002) 228.

Google Scholar

[20] Y.A. Mankelevich, P.W. May, Diamond Relat. Mater. 17 (2008) 1021.

Google Scholar

[21] Z.Y. Zhou, G.C. Chen, B. Li, S.J. Askari, W.Z. Tang, C.M. Li, J.H. Song, Y.M. Tong, F.X. Lu, Surf. Coat. Technol. 201 (2007) 4987.

Google Scholar

[22] F.X. Lu, W.Z. Tang, T.B. Huang, J.M. Liu, J.H. Song, W.X. Yu, Y.M. Tong, Diamond Relat. Mater. 10 (2001) 1551.

Google Scholar

[23] G.C. Chen, H. Lan, B. Li, F.W. Dai, S.J. Askari, J.H. Song, L.F. Hei, W.Z. Tang, F.X. Lu, J. Cryst. Growth 309 (2007) 86.

Google Scholar

[24] Y.K. Chih, Y.L. Chueh, C.H. Chen, J. Hwang, L.J. Chou, C.S. Kou, Diamond Relat. Mater. 15 (2006) 1246.

Google Scholar

[25] J.Y. Huang, Acta Mater. 47 (1999) 1801.

Google Scholar