Welding of Inconel 625 Using a Direct Diode Laser

Article Preview

Abstract:

In this study, a high power direct diode laser (HPDDL), with a rectangular laser beam spot, was used for conduction mode welding of Inconel 625 sheets (0.8 mm thick). The influence of laser butt welding parameters on weld quality and mechanical properties of test joints was studied. The quality and mechanical properties of the joints were determined by means of tensile and bending tests, and micro hardness tests, and also metallographic examinations. The minimum heat input required to achieve full penetration butt welded joints was found to be 60 J/mm. The joints exhibited comparable yield and about 15 % lower ultimate tensile strength when compared with that of the base metal.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

331-336

Citation:

Online since:

October 2014

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] G.P. Dinda, A.K. Dasgupta, J. Mazumder, Laser aided metal deposition of Inconel 625 superalloy: Microstructural evolution and thermal stability, Materials Science and Engineering A 509 (2009) 98-104.

DOI: 10.1016/j.msea.2009.01.009

Google Scholar

[2] B. Szczucka-Lasota, B. Formanek, A. Hernas: Growth of corrosion products on thermally sprayed coatings with FeAl intermetallic phases in aggressive environments, Journal of Materials Processing Technology (2005).

DOI: 10.1016/j.jmatprotec.2005.02.244

Google Scholar

[3] K.H. Song, K. Nakata, Mechanical Properties of Friction-Stir-Welded Inconel 625 Alloy, Materials Transactions 50 10 (2009) 2498- 2501.

DOI: 10.2320/matertrans.m2009200

Google Scholar

[4] A. Lisiecki : Diode laser welding of high yield steel. Proc. of SPIE Vol. 8703, Laser Technology 2012: Applications of Lasers, 87030S (2013), DOI: 10. 1117/12. 2013429.

DOI: 10.1117/12.2013429

Google Scholar

[5] J. Górka : Analysis of simulated welding thermal cycles S700MC using a thermal imaging camera, Advance Material Research ISI Proceedings 837 (2014) 375-380.

DOI: 10.4028/www.scientific.net/amr.837.375

Google Scholar

[6] J. Adamiec, A. Grabowski, A. Lisiecki; Joining of an Ni-Al alloy by means of laser beam welding. Proc. SPIE 5229, Laser Technology VII: Applications of Lasers, 215 (2003).

DOI: 10.1117/12.520719

Google Scholar

[7] T. Tański, L.A. Dobrzanski, L. Cizek, L, Influence of heat treatment on structure and properties of the cast magnesium alloys, Advanced Materials Research 15-17 (2007) 491-496 DOI: 10. 4028/www. scientific. net/AMR. 15-17. 49.

DOI: 10.4028/www.scientific.net/amr.15-17.491

Google Scholar

[8] D. Dobrzanska-Danikiewicz, T. Tański, J. Domagala-Dubiel, Unique properties, development perspectives and expected applications of laser treated casting magnesium alloys, Archives Of Civil And Mechanical Engineering 12/3 (2012).

DOI: 10.1016/j.acme.2012.06.007

Google Scholar

[9] W. Ozgowicz, K. Labisz, Analysis of the state of the fine-dispersive precipitations in the structure of high strength steel Weldox 1300 by means of electron diffraction, Journal of Iron and Steel Research, International 18, 135-142 (2011).

Google Scholar

[10] L.A. Dobrzański, K. Labisz, E. Jonda, A. Klimpel, Comparison of the surface alloying of the 32CrMoV12-28 tool steel using TiC and WC powder, J. Mater. Process. Technol. 191 (2007) 321-325.

DOI: 10.1016/j.jmatprotec.2007.03.091

Google Scholar

[11] W. Sitek, A mathematical model of the hardness of high-speed steels, Transactions of Famena, 34 (2010) 39-46.

Google Scholar

[12] L.A. Dobrzański, W. Borek, Hot-Working Behaviour of Advanced High-Manganese C-Mn-Si-Al Steels, Materials Science Forum 654-656 (2010) 266-269.

DOI: 10.4028/www.scientific.net/msf.654-656.266

Google Scholar

[13] A. Lisiecki : Welding of titanium alloy by Disk laser. Proc. of SPIE Vol. 8703, Laser Technology 2012: Applications of Lasers, 87030T (2013), DOI: 10. 1117/12. 2013431.

DOI: 10.1117/12.2013431

Google Scholar

[14] K. Lukaszkowicz, J. Sondor, A. Kriz, M. Pancielejko, Structure, mechanical properties and corrosion resistance of nanocomposite coatings deposited by PVD technology onto the X6CrNiMoTi17-12-2 and X40CrMoV5-1 steel substrates, Journal of Materials Science 45 (2010).

DOI: 10.1007/s10853-009-4140-1

Google Scholar

[15] J. Górka: Influence of welding thermal cycling on the join properties of S 700MC steel treated using thermomechanical method, 15th International Conference on Experimental Mechanics, 22-27 July 2012, Portugal, Porto, 197-198.

Google Scholar

[16] W. Sitek, Dobrzański L.A., Comparison of hardenability calculation methods of the heat-treatable constructional steels, J. Mater. Process. Technol. 64 (1-3)  (1995) 117-126.

DOI: 10.1016/s0924-0136(96)02559-9

Google Scholar

[17] T. Węgrzyn, J. Piwnik, R. Wieszala, D. Hadys: Control over the steel welding structure parameters by micro-jet cooling, vol. 57, Archives of Metallurgy and Materials, 679-684.

DOI: 10.2478/v10172-012-0073-9

Google Scholar

[18] J. Piwnik, D. Hadryś, G. Skorulski.: Plastic properties of  weld after micro-jet cooling, Journal of Achievements in Material and Manufacturing Engineering 59 (2013).

Google Scholar

[19] L. Blacha,G. Siwiec, B. Oleksiak: Loss of aluminium during the process of Ti-Al-V alloy smelting in a vacuum induction melting (VIM) furnace, Metalurgija 52 (3) (2013) 301-304.

DOI: 10.4028/www.scientific.net/amr.1036.422

Google Scholar

[20] T. Węgrzyn, J. Piwnik, D. Hadryś, Acicular ferrite in micro welding technologies, Archives of Metallurgy and Materials, 59 (2014).

DOI: 10.2478/amm-2014-0096

Google Scholar