[1]
Luis, G. (1993), Complex Fluids, Springer, Volume 415, 327-349.
Google Scholar
[2]
Mitchell, M. (2009), Complexity: A guided tour. Oxford University Press, Oxford, 230-237.
Google Scholar
[3]
Mitchell, O. D., Thomas, B. G. (2012), Mathematical modeling for complex fluids and flows. Springer, 2012 edition, 95-147.
Google Scholar
[4]
Thomas, Y. Hou, Chun Liu, Jian-Guo Liu (2009), Multi-scale phenomena in complex fluids: modeling, analysis and numerical simulation. World Scientific Publishing Company, 338-342.
Google Scholar
[5]
Biroli, G. (2007), Jamming: A new kind of phase transition? Nat Phys 3 (4), 222-223.
Google Scholar
[6]
Trappe, V.; Prasad, V.; Cipelletti, L.; Segre, P. N. And Weitz, D. A. (2001), Jamming phase diagram for attractive particles. Nature 411 (6839), 772-775.
DOI: 10.1038/35081021
Google Scholar
[7]
Qian, Y. H.; D'Humieres D. And P. Lallemand Lattice (1992), BGK models for Navier-Stokes equations. Europhysics Letters 17 (6), 479.
DOI: 10.1209/0295-5075/17/6/001
Google Scholar
[8]
Chen-Shiyi and Doolen Gary, D. (1998), Lattice Boltzmann methodd for fluid flows. Annual Review of Fluid Mechanics 30 (1), 329-364.
DOI: 10.1146/annurev.fluid.30.1.329
Google Scholar
[9]
Nedeff, V.; Mosnegutu, E.; Panainte, M.; Ristea, M.; Lazar, G.; Scurtu, D.; Ciobanu, B., Timofte, A.; Toma, S.; Agop, M. (2012), Dynamics in the boundary layer of a flat particle. Powder Technology, 221, 312-317.
DOI: 10.1016/j.powtec.2012.01.019
Google Scholar
[10]
Nedeff, V.; Bejenariu, C.; Lazar, G., Agop, M. (2013), Generalized lift force for complex fluid. Powder technology, 235, 685-695.
DOI: 10.1016/j.powtec.2012.11.027
Google Scholar
[11]
Gradinaru, I.; Nicuta, A.; Eva, L.; Agop, M.; Popa, R.F. (2013), Dynamic behaviors in complex fluids via non-differentiability. Wulfenia Journal, 20 (6), 183-195.
Google Scholar
[12]
Popa, R. F.; Axinte C.I., Eva, L.; Baciu, C., Volovat, S.; Tesloianu, D.; Rusu, C.M.; Agop, M; Gradinaru, I. (2013), Dispersive behaviours of the complex fluid via non-differentiability. Wulfenia Journal, 20 (12), 46-62.
Google Scholar
[13]
Nottale, L. (1993), Fractal space-time and microphysics: toward a theory of scale relativity. World Scientific, Singapore.
DOI: 10.1142/1579
Google Scholar
[14]
Nottale, L. (2011), Scale relativity and fractal space-time – a new approach to unifying relativity and quantum mechanics. Imperial College Press, London.
DOI: 10.1142/p752
Google Scholar
[15]
Nica, P.; Vizureanu, P.; Agop, M. et. al. (2009), experimental and theoretical aspects of aluminium expanding laser plasma. Japanese Journal of Applied Physics, 48 (6), Article Number: 066001 DOI: 10. 1143/JJAP. 48. 066001.
DOI: 10.1143/jjap.48.066001
Google Scholar
[16]
Agop, M.; Forna, N.; Cassian-Botez, I. Et al. (2008). New theoretical approach of the physical processes in nanostructures. Journal of Computational and Theoretical Nanoscience, 5 (4), 483-489.
DOI: 10.1166/jctn.2008.2489
Google Scholar
[17]
Gurlui, S.; Agop, M.; Strat, M. et al. (2006), Some experimental and theoretical results of the anodic patterns in plasma discharge. Physics of Plasmas, 13 (6).
DOI: 10.1063/1.2205195
Google Scholar
[18]
Ciubotariu, C.; Agop, M. (1996), Absence of a gravitational analog to the Meissner effect. General Relativity and Gravitation, 28 (4), 405-412.
DOI: 10.1007/bf02105084
Google Scholar
[19]
Agop, M.; Forna, N.; Cassian-Botez, I. Et al. (2008). New theoretical approach of the physical processes in nanostructures. Journal of Computational and Theoretical Nanoscience, 5 (4), 483-489.
DOI: 10.1166/jctn.2008.2489
Google Scholar
[20]
Colotin, M.; Pompilian, G.O.; Nica, P. et al. (2009), Fractal transport phenomena through the scale relativity model, Acta Physica Polonica A, 116 (2), 157-164.
DOI: 10.12693/aphyspola.116.157
Google Scholar
[21]
Agop, M.; Nica, P.; Girtu, Manuela (2008). On the vacuum status in Weyl-Dirac theory. General relativity and gravitation, 40 (1), 35-55.
DOI: 10.1007/s10714-007-0519-y
Google Scholar
[22]
Agop, M.; Murgulet, C. (2007). El Naschie's epsilon (infinity) space-time and scale relativity theory in the topological dimension D=4. Chaos Solitons & Fractals, 32 (3), 1231-1240.
DOI: 10.1016/j.chaos.2006.09.038
Google Scholar
[23]
Gottlieb, I.; Agop, M.; Jarcau, M. (2004), El Naschie's Cantonian space-time and general relativity by means of Barbilian's group. A Cantonian fractal axiomatic model of space-time, Chaos Solitons & Fractals, 19 (4), 705-730.
DOI: 10.1016/s0960-0779(03)00244-3
Google Scholar
[24]
Agop, M.; Nica, P.; Niculescu, O.; Dumitru, D. G. (2012). Experimental and theoretical investigations of the negative differential resistance in a discharge plasma. Jurnal of the Physical Society of Japan, 81, 064502.
DOI: 10.1143/jpsj.81.064502
Google Scholar
[25]
Gurlui, S.; Agop, M.; Nica, P.; Ziskind, M.; Focsa, C. (2008), Experimental and theoretical investigations of transitory phenomena in high-fluence laser ablation plasma. Phys. Rev. E 78, 026405.
DOI: 10.1103/physreve.78.026405
Google Scholar
[26]
Munceleanu, G. V.; Paun, V. P.; Casian-Botez, I., Agop, M. (2011), The microscopic-macroscopic scale transformations through a chaos scenario in the fractal space-time theory, International Journal of Bifurcation and Chaos, 21, 603-618.
DOI: 10.1142/s021812741102888x
Google Scholar
[27]
Nica, P.; Agop, M.; Gurlui S.; Bejenariu, C.; Focsa, C. (2012), Characterization of aluminium laser produced plasma by target current measurements, Japanese Journal of Applied Physics, 51.
DOI: 10.7567/jjap.51.106102
Google Scholar
[28]
Cassian-Botez, I.; Agop, M.; Nica, P.; Paun, V.; Munceleanu, G.V. (2010), Conductive and convective types behaviors at nano-time scales. Journal of Computational and Theoretical Nanoscience, 7, 2271-2280.
DOI: 10.1166/jctn.2010.1608
Google Scholar
[29]
Mandelbrot, B. (1983), The fractal geometry of nature (Updated and augm. ed. ) New York: W.H. Freeman.
Google Scholar
[30]
Landau, L. and Lifshitz E.M. (1987), Fluid Mechanics, 2nd edition (Butterworth-Heinemann, Oxford).
Google Scholar