Transport Phenomena in "Liquid Wood" Treated with a Complex Fluid Using the Scale Relativity

Article Preview

Abstract:

Materials are the main substances that have an important effect on company development and require some simple or complex manufacturing technologies. The future use of recyclable materials will become an extremely important factor in all fields of activity. Therefore, "liquid wood", due to its biodegradability and mechanical properties superior to other plastics, could replace some plastic materials in the near future. The injected parts can be obtained using the same injection machines used for the injection of plastic materials. The technological injection parameters such as: injection pressure, injection time, cooling time, mold temperature, etc. are different. A new study of transport fenomena in liquid wood treated with the complex fluid is proposed considering that the complex fluid and agents moving in continuous and non-differentiable curves (fractal curves). Within this framework, the transport equations of mass, energy and impulse are obtained and the fundamental theorems of complex fluid are established at well. In the end, our model and the classical results are correlated.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

77-82

Citation:

Online since:

October 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Luis, G. (1993), Complex Fluids, Springer, Volume 415, 327-349.

Google Scholar

[2] Mitchell, M. (2009), Complexity: A guided tour. Oxford University Press, Oxford, 230-237.

Google Scholar

[3] Mitchell, O. D., Thomas, B. G. (2012), Mathematical modeling for complex fluids and flows. Springer, 2012 edition, 95-147.

Google Scholar

[4] Thomas, Y. Hou, Chun Liu, Jian-Guo Liu (2009), Multi-scale phenomena in complex fluids: modeling, analysis and numerical simulation. World Scientific Publishing Company, 338-342.

Google Scholar

[5] Biroli, G. (2007), Jamming: A new kind of phase transition? Nat Phys 3 (4), 222-223.

Google Scholar

[6] Trappe, V.; Prasad, V.; Cipelletti, L.; Segre, P. N. And Weitz, D. A. (2001), Jamming phase diagram for attractive particles. Nature 411 (6839), 772-775.

DOI: 10.1038/35081021

Google Scholar

[7] Qian, Y. H.; D'Humieres D. And P. Lallemand Lattice (1992), BGK models for Navier-Stokes equations. Europhysics Letters 17 (6), 479.

DOI: 10.1209/0295-5075/17/6/001

Google Scholar

[8] Chen-Shiyi and Doolen Gary, D. (1998), Lattice Boltzmann methodd for fluid flows. Annual Review of Fluid Mechanics 30 (1), 329-364.

DOI: 10.1146/annurev.fluid.30.1.329

Google Scholar

[9] Nedeff, V.; Mosnegutu, E.; Panainte, M.; Ristea, M.; Lazar, G.; Scurtu, D.; Ciobanu, B., Timofte, A.; Toma, S.; Agop, M. (2012), Dynamics in the boundary layer of a flat particle. Powder Technology, 221, 312-317.

DOI: 10.1016/j.powtec.2012.01.019

Google Scholar

[10] Nedeff, V.; Bejenariu, C.; Lazar, G., Agop, M. (2013), Generalized lift force for complex fluid. Powder technology, 235, 685-695.

DOI: 10.1016/j.powtec.2012.11.027

Google Scholar

[11] Gradinaru, I.; Nicuta, A.; Eva, L.; Agop, M.; Popa, R.F. (2013), Dynamic behaviors in complex fluids via non-differentiability. Wulfenia Journal, 20 (6), 183-195.

Google Scholar

[12] Popa, R. F.; Axinte C.I., Eva, L.; Baciu, C., Volovat, S.; Tesloianu, D.; Rusu, C.M.; Agop, M; Gradinaru, I. (2013), Dispersive behaviours of the complex fluid via non-differentiability. Wulfenia Journal, 20 (12), 46-62.

Google Scholar

[13] Nottale, L. (1993), Fractal space-time and microphysics: toward a theory of scale relativity. World Scientific, Singapore.

DOI: 10.1142/1579

Google Scholar

[14] Nottale, L. (2011), Scale relativity and fractal space-time – a new approach to unifying relativity and quantum mechanics. Imperial College Press, London.

DOI: 10.1142/p752

Google Scholar

[15] Nica, P.; Vizureanu, P.; Agop, M. et. al. (2009), experimental and theoretical aspects of aluminium expanding laser plasma. Japanese Journal of Applied Physics, 48 (6), Article Number: 066001 DOI: 10. 1143/JJAP. 48. 066001.

DOI: 10.1143/jjap.48.066001

Google Scholar

[16] Agop, M.; Forna, N.; Cassian-Botez, I. Et al. (2008). New theoretical approach of the physical processes in nanostructures. Journal of Computational and Theoretical Nanoscience, 5 (4), 483-489.

DOI: 10.1166/jctn.2008.2489

Google Scholar

[17] Gurlui, S.; Agop, M.; Strat, M. et al. (2006), Some experimental and theoretical results of the anodic patterns in plasma discharge. Physics of Plasmas, 13 (6).

DOI: 10.1063/1.2205195

Google Scholar

[18] Ciubotariu, C.; Agop, M. (1996), Absence of a gravitational analog to the Meissner effect. General Relativity and Gravitation, 28 (4), 405-412.

DOI: 10.1007/bf02105084

Google Scholar

[19] Agop, M.; Forna, N.; Cassian-Botez, I. Et al. (2008). New theoretical approach of the physical processes in nanostructures. Journal of Computational and Theoretical Nanoscience, 5 (4), 483-489.

DOI: 10.1166/jctn.2008.2489

Google Scholar

[20] Colotin, M.; Pompilian, G.O.; Nica, P. et al. (2009), Fractal transport phenomena through the scale relativity model, Acta Physica Polonica A, 116 (2), 157-164.

DOI: 10.12693/aphyspola.116.157

Google Scholar

[21] Agop, M.; Nica, P.; Girtu, Manuela (2008). On the vacuum status in Weyl-Dirac theory. General relativity and gravitation, 40 (1), 35-55.

DOI: 10.1007/s10714-007-0519-y

Google Scholar

[22] Agop, M.; Murgulet, C. (2007). El Naschie's epsilon (infinity) space-time and scale relativity theory in the topological dimension D=4. Chaos Solitons & Fractals, 32 (3), 1231-1240.

DOI: 10.1016/j.chaos.2006.09.038

Google Scholar

[23] Gottlieb, I.; Agop, M.; Jarcau, M. (2004), El Naschie's Cantonian space-time and general relativity by means of Barbilian's group. A Cantonian fractal axiomatic model of space-time, Chaos Solitons & Fractals, 19 (4), 705-730.

DOI: 10.1016/s0960-0779(03)00244-3

Google Scholar

[24] Agop, M.; Nica, P.; Niculescu, O.; Dumitru, D. G. (2012). Experimental and theoretical investigations of the negative differential resistance in a discharge plasma. Jurnal of the Physical Society of Japan, 81, 064502.

DOI: 10.1143/jpsj.81.064502

Google Scholar

[25] Gurlui, S.; Agop, M.; Nica, P.; Ziskind, M.; Focsa, C. (2008), Experimental and theoretical investigations of transitory phenomena in high-fluence laser ablation plasma. Phys. Rev. E 78, 026405.

DOI: 10.1103/physreve.78.026405

Google Scholar

[26] Munceleanu, G. V.; Paun, V. P.; Casian-Botez, I., Agop, M. (2011), The microscopic-macroscopic scale transformations through a chaos scenario in the fractal space-time theory, International Journal of Bifurcation and Chaos, 21, 603-618.

DOI: 10.1142/s021812741102888x

Google Scholar

[27] Nica, P.; Agop, M.; Gurlui S.; Bejenariu, C.; Focsa, C. (2012), Characterization of aluminium laser produced plasma by target current measurements, Japanese Journal of Applied Physics, 51.

DOI: 10.7567/jjap.51.106102

Google Scholar

[28] Cassian-Botez, I.; Agop, M.; Nica, P.; Paun, V.; Munceleanu, G.V. (2010), Conductive and convective types behaviors at nano-time scales. Journal of Computational and Theoretical Nanoscience, 7, 2271-2280.

DOI: 10.1166/jctn.2010.1608

Google Scholar

[29] Mandelbrot, B. (1983), The fractal geometry of nature (Updated and augm. ed. ) New York: W.H. Freeman.

Google Scholar

[30] Landau, L. and Lifshitz E.M. (1987), Fluid Mechanics, 2nd edition (Butterworth-Heinemann, Oxford).

Google Scholar