[1]
K. Mizuuchi , K. Inoue, M. Sugioka, M. Itami, J. -H. Lee, M. Kawahara, Properties of Ni-aluminides-reinforced Ni-matrix laminates synthesized by pulsed-current hot pressing (PCHP), Materials Science and Engineering A 428 (2006) 169–174.
DOI: 10.1016/j.msea.2006.04.113
Google Scholar
[2]
T.S. Sameyshcheva, A.A. Bataev, P.S. Yartsev, I.A. Bataev, I.A. Polyakov, Metallic-Intermetallic composites produced by vacuum casting and annealing of Ni and Al, The 7th international forum on strategic technology 2012 (IFOST 2012), 1(2012).
DOI: 10.1109/ifost.2012.6357550
Google Scholar
[3]
V. I. Mali, D.V. Pavliukova, I.A. Bataev, A.A. Bataev, A.I. Smirnov, P.S. Yartsev, V.V. Bazarkina, Formation of the intermetallic layers in Ti-Al multilayer composites, Advanced Materials Research. 311 – 313 (2011) 236-239.
DOI: 10.4028/www.scientific.net/amr.311-313.236
Google Scholar
[4]
I.A. Bataev, A.A. Bataev, V.I. Mali, D.V. Pavliukova, Structural and mechanical properties of metallic–intermetallic laminate composites produced by explosive welding and annealing, Mater. Des. 35 (2012) 225-234.
DOI: 10.1016/j.matdes.2011.09.030
Google Scholar
[5]
D. V. Pavliukova, V. I. Mali, A. A. Bataev, P. S. Yartsev, T. S. Sameyshcheva, L. I. Shevtsova, Influence of the explosively welded composites structure on the diffusion processes occurring during annealing, The 8th International forum on strategic technology 2013 (IFOST 2013). 1 (2013).
DOI: 10.1109/ifost.2013.6616967
Google Scholar
[6]
R.R. Adharapurapu, K.S. Vecchio, F. Jiang, A. Rohatgi, Effects of ductile laminate thickness, volume fraction, and orientation on fatigue-crack propagation in Ti-Al3Ti metal-intermetallic laminate composites, Metall. Mater. Trans. A. 36 (2005).
DOI: 10.1007/s11661-005-0251-8
Google Scholar
[7]
D.J. Harach, K.S. Vecchio, Microstructure evolution in metal-intermetallic laminate (MIL) composites synthesized by reactive foil sintering in air, Metall. Mater. Trans. A. 32 (2001) 1493–1505.
DOI: 10.1007/s11661-001-0237-0
Google Scholar
[8]
F. Zhang, L. Lu, M.O. Lai, F.H.S. Froes, Grain growth and recrystallization of nanocrystalline Al3Ti prepared by mechanical alloying. J. Mater. Sci. 38 (2003) 613–619.
Google Scholar
[9]
Hee Y. Kim, Dong S. Chung, M. Enoki, Soon H. Hong, Tensile and fracture properties of NiAl/Ni micro-laminated composites prepared by reaction synthesis, , J. Mater. Res., 21 - 5 (2006) 1141 – 1149.
DOI: 10.1557/jmr.2006.0154
Google Scholar
[10]
J. Rawers, K. Perry, Crack initiation in laminated metal-intermetallic composites, Journal of Material Science, 31 (1996) 901 – (1906).
DOI: 10.1007/bf00360755
Google Scholar
[11]
H. Y. Kim, D. S. Chungb, S. H. Hong, Reaction synthesis and microstructures of NiAl/Ni micro-laminated composites, Materials Science and Engineering A 396 (2005) 376–384.
DOI: 10.1016/j.msea.2005.01.044
Google Scholar
[12]
H. Y. Kim, D. S. Chung, S. H. Hong, Intermixing criteria for reaction synthesis of Ni/Al multilayered microfoils, Scripta Materialia 54 (2006) 1715–1719.
DOI: 10.1016/j.scriptamat.2005.12.032
Google Scholar
[13]
P. Zhu , J.C.M. Li, C.T. Liu, Combustion reaction in multilayered nickel and aluminum foils, Materials Science and Engineering A239–240 (1997) 532–539.
DOI: 10.1016/s0921-5093(97)00627-8
Google Scholar
[14]
Y. -B Sun., Y. -Q. Zhao, D. Zhang, C. -Y. Liu, H. -Y. Diao, C. -L. Ma Multilayered Ti-Al intermetallic sheets fabricated by cold rolling and annealing of titanium and aluminum foils , Trans. Nonferrous Met. Soc. China 21 (2001) 1722 – 1727.
DOI: 10.1016/s1003-6326(11)60921-7
Google Scholar
[15]
C. -C. Hsi, M. -S. Shi, and W. Wu, Growth of Intermetallic Phases in Al/Cu Composites at Various Annealing Temperatures During the ARB Process, Met. Mater. Int., Vol. 18, No. 1 (2012) 1-6.
DOI: 10.1007/s12540-012-0001-6
Google Scholar
[16]
J. S. Kim, H. S. Choi, D. Dudina, J. K. Lee, Young Soon Kwon, Spark Plasma Sintering of Nanoscale (Ni+Al) Powder Mixture, Solid State Phenomena Vol. 119 (2007) 35-38.
DOI: 10.4028/www.scientific.net/ssp.119.35
Google Scholar
[17]
F. Quncheng, Ch. Huifen, J. Zhihao, Dissolution–precipitation mechanism of self-propagating high-temperature synthesis of mononickel aluminide, Intermetallics 9 (2001) 609–619.
DOI: 10.1016/s0966-9795(01)00046-2
Google Scholar
[18]
1965.V.S. Sinelnikova, V.A. Podergin, V.N. Rechkin, Aluminidy, Naukova dumka, Kiev, (1965).
Google Scholar