[1]
S.C. Deevi, V.K. Sikka. Nickel and iron aluminides: an overview on properties, processing, and applications, Intermetallics, 4 (1996) 357–375.
DOI: 10.1016/0966-9795(95)00056-9
Google Scholar
[2]
L.I. Shevtsova, V.I. Mali, A.A. Bataev, I.A. Bataev, D.S. Terent'ev, V.S. Lozhkin, Structure and properties of composite materials aluminum-nickel aluminide, produced by the SPS method, The 8 international forum on strategic technologies (IFOST 2013). 1 (2013).
DOI: 10.1109/ifost.2013.6616956
Google Scholar
[3]
I. Bataev, A. Bataev, D. Pavliukova, V. Mali, Structural and mechanical properties of metallic-intermetallic laminate composites produced by explosive welding and annealing, Materials and Design. 35 (2012) 225-234.
DOI: 10.1016/j.matdes.2011.09.030
Google Scholar
[4]
S.K. Shee, S.K. Pradhan, M. De, Effect of alloying on the microstructure and mechanical properties of Ni3Al, Journal of Alloys and Compounds, 265 (1-2) (1998) 249-256.
DOI: 10.1016/s0925-8388(97)00291-0
Google Scholar
[5]
V. Yu. Filimonov, M.A. Korchagin, N.Z. Lyakhov, Kinetics of mechanically activated high temperature synthesis of Ni3Al in the thermal explosion mode, Intermetallics. 19 (2011) 833-840.
DOI: 10.1016/j.intermet.2010.11.028
Google Scholar
[6]
M.A. Korchagin, T.F. Grigorieva, B.B. Bokhonov et al., Solid-state combustion in mechanically activated SHS systems. I. Effect of activation time on process parameters and combustion product, Combust Explos Shock Waves. 39 (1) (2003) 43.
DOI: 10.1007/s10573-010-0026-4
Google Scholar
[7]
M.A. Korchagin, T.F. Grigorieva, B.B. Bokhonov, et al., Solid State Combustion in mechanically activated SHS systems. II. Effect of mechanical activation conditions on process parameters and combustion product, Combust Explos Shock Waves 2003; 39 (1): 51.
DOI: 10.1007/s10573-010-0026-4
Google Scholar
[8]
M.A. Korchagin, D.V. Dudina, Application of self-propagating high-temperature synthesis and mechanical activation for obtaining nanocomposites, Combust Explos Shock Waves. 43 (2) (2007) 176.
DOI: 10.1007/s10573-007-0024-3
Google Scholar
[9]
D. Hulbert, D. Jiang, D. Dudina, A. Mukherjee, The synthesis and consolidation of hard materials by spark plasma sintering, International Journal of Refractory Metals and Hard Materials. 27(2) (2009) 367-375.
DOI: 10.1016/j.ijrmhm.2008.09.011
Google Scholar
[10]
Z. Munir, U. Tamburini and M. Ohyanagi, The effect of electric field and pressure on the synthesis and consolidation of materials: a review of the spark plasma sintering method, Journal of Materials Science. 41 (3) (2006) 763–777.
DOI: 10.1007/s10853-006-6555-2
Google Scholar
[11]
R. Orrù, R. Licheri, A.M. Locci, A. Cincotti and G. Cao, Consolidation/synthesis of materials by electric current activated/assisted sintering, Materials Science and Engineering. 63 (4–6) (2009) 127–287.
DOI: 10.1016/j.mser.2008.09.003
Google Scholar
[12]
N. Saheb, Z. Iqbal, A. Khalil, A. Hakeem, N. Aqeeli, T. Laoui, A. Al-Qutub and R. Kirchner, Spark Plasma Sintering of Metals and Metal Matrix Nanocomposites: A Review, Journal of Nanomaterials. 1 (2012) 13.
DOI: 10.1155/2012/983470
Google Scholar
[13]
A.S. Rogachev, A.S. Mukasyan, Gorenie dlya sinteza materialov: vvedenie v strukturnuyu makrokinetiku, Moscow, (2013).
Google Scholar
[14]
J. S. Kim, H. S. Choi, D. Dudina, J. K. Lee, Y. S. Kwon, Spark Plasma Sintering of nanoscale (Ni+Al) powder mixture, Solid State Phenomena. 119 (2007) 35-38.
DOI: 10.4028/www.scientific.net/ssp.119.35
Google Scholar
[15]
B.A. Kolachev, V.I. Elagin, V.A. Livanov, Metallovedenie i termicheskaya obrabotka cvetnich metallov i splavov, Moscow, (1999).
Google Scholar