Spark Plasma Sintering of Mechanically Activated Ni and Al Powders

Article Preview

Abstract:

In this paper structure and mechanical properties of Ni3Al intermetallic compound was studied. The materials was fabricated according to different schemes, which combined mechanical alloying of Ni and Al powders, self-propagating high temperature synthesis (SHS) and spark plasma sintering (SPS). Relative density of all sintered samples was ~ 97 %. Microhardness of the sintered materials ranged from 6100 to 6300 MPa. SPS of 86.71 % wt. Ni and 13.29 % wt. Ni powder at 1100 °C led to formation of material with the highest level of tensile strength equal to 400 MPa.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

772-777

Citation:

Online since:

September 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S.C. Deevi, V.K. Sikka. Nickel and iron aluminides: an overview on properties, processing, and applications, Intermetallics, 4 (1996) 357–375.

DOI: 10.1016/0966-9795(95)00056-9

Google Scholar

[2] L.I. Shevtsova, V.I. Mali, A.A. Bataev, I.A. Bataev, D.S. Terent'ev, V.S. Lozhkin, Structure and properties of composite materials aluminum-nickel aluminide, produced by the SPS method, The 8 international forum on strategic technologies (IFOST 2013). 1 (2013).

DOI: 10.1109/ifost.2013.6616956

Google Scholar

[3] I. Bataev, A. Bataev, D. Pavliukova, V. Mali, Structural and mechanical properties of metallic-intermetallic laminate composites produced by explosive welding and annealing, Materials and Design. 35 (2012) 225-234.

DOI: 10.1016/j.matdes.2011.09.030

Google Scholar

[4] S.K. Shee, S.K. Pradhan, M. De, Effect of alloying on the microstructure and mechanical properties of Ni3Al, Journal of Alloys and Compounds, 265 (1-2) (1998) 249-256.

DOI: 10.1016/s0925-8388(97)00291-0

Google Scholar

[5] V. Yu. Filimonov, M.A. Korchagin, N.Z. Lyakhov, Kinetics of mechanically activated high temperature synthesis of Ni3Al in the thermal explosion mode, Intermetallics. 19 (2011) 833-840.

DOI: 10.1016/j.intermet.2010.11.028

Google Scholar

[6] M.A. Korchagin, T.F. Grigorieva, B.B. Bokhonov et al., Solid-state combustion in mechanically activated SHS systems. I. Effect of activation time on process parameters and combustion product, Combust Explos Shock Waves. 39 (1) (2003) 43.

DOI: 10.1007/s10573-010-0026-4

Google Scholar

[7] M.A. Korchagin, T.F. Grigorieva, B.B. Bokhonov, et al., Solid State Combustion in mechanically activated SHS systems. II. Effect of mechanical activation conditions on process parameters and combustion product, Combust Explos Shock Waves 2003; 39 (1): 51.

DOI: 10.1007/s10573-010-0026-4

Google Scholar

[8] M.A. Korchagin, D.V. Dudina, Application of self-propagating high-temperature synthesis and mechanical activation for obtaining nanocomposites, Combust Explos Shock Waves. 43 (2) (2007) 176.

DOI: 10.1007/s10573-007-0024-3

Google Scholar

[9] D. Hulbert, D. Jiang, D. Dudina, A. Mukherjee, The synthesis and consolidation of hard materials by spark plasma sintering, International Journal of Refractory Metals and Hard Materials. 27(2) (2009) 367-375.

DOI: 10.1016/j.ijrmhm.2008.09.011

Google Scholar

[10] Z. Munir, U. Tamburini and M. Ohyanagi, The effect of electric field and pressure on the synthesis and consolidation of materials: a review of the spark plasma sintering method, Journal of Materials Science. 41 (3) (2006) 763–777.

DOI: 10.1007/s10853-006-6555-2

Google Scholar

[11] R. Orrù, R. Licheri, A.M. Locci, A. Cincotti and G. Cao, Consolidation/synthesis of materials by electric current activated/assisted sintering, Materials Science and Engineering. 63 (4–6) (2009) 127–287.

DOI: 10.1016/j.mser.2008.09.003

Google Scholar

[12] N. Saheb, Z. Iqbal, A. Khalil, A. Hakeem, N. Aqeeli, T. Laoui, A. Al-Qutub and R. Kirchner, Spark Plasma Sintering of Metals and Metal Matrix Nanocomposites: A Review, Journal of Nanomaterials. 1 (2012) 13.

DOI: 10.1155/2012/983470

Google Scholar

[13] A.S. Rogachev, A.S. Mukasyan, Gorenie dlya sinteza materialov: vvedenie v strukturnuyu makrokinetiku, Moscow, (2013).

Google Scholar

[14] J. S. Kim, H. S. Choi, D. Dudina, J. K. Lee, Y. S. Kwon, Spark Plasma Sintering of nanoscale (Ni+Al) powder mixture, Solid State Phenomena. 119 (2007) 35-38.

DOI: 10.4028/www.scientific.net/ssp.119.35

Google Scholar

[15] B.A. Kolachev, V.I. Elagin, V.A. Livanov, Metallovedenie i termicheskaya obrabotka cvetnich metallov i splavov, Moscow, (1999).

Google Scholar