The Influence of Radio Frequency Magnetron Sputtering on Biodegradable Polymers Surface Properties

Article Preview

Abstract:

The paper investigated the modifying possibility of the biodegradable polymer materials surface (polylactic acid and polycaprolactone) in radio frequency discharge plasma, initiating hydroxyapatite solid target sputtering. It was demonstrated that discharge plasma treatment adjusts the surface properties of biodegradable polymers – surface free energy and the wetting angle. The disadvantage of biodegradable polymers, limiting their use in reconstructive medicine, is their hydrophobicity. The surface of biodegradable polymers becomes hydrophilic after modification.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

795-799

Citation:

Online since:

September 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] H. Tian, Z. Tang, X. Zhuang, X. Chen, X. Jing, Biodegradable synthetic polymers: Preparation, fictionalization and biomedical application, Progr. Polym. Sci. 37 (2012) 237-280.

DOI: 10.1016/j.progpolymsci.2011.06.004

Google Scholar

[2] F. Poncin-Epaillard, O. Shavdina, D. Debarno, Elaboration and surface modification of structured poly(L-lactic acid) thin film on various substrates, Mater. Sci. Eng. 33 (2013) 2526-2533.

DOI: 10.1016/j.msec.2013.02.010

Google Scholar

[3] S.I. Tverdokhlebov, E.N. Bolbasov, E.V. Shesterikov, A.I. Malchikhinа, V.A. Novikov, Y.G. Anissimov, Research of the surface properties of the thermoplastic copolymer of vinilidenefluoride and tetrafluoroethylene modified with radio-frequency magnetron sputtering for medical application, Appl. Surf. Sci. 263 (2012).

DOI: 10.1016/j.apsusc.2012.09.025

Google Scholar

[4] L.I. Kravets, S. N. Dmitriev, A. B. Gil'man, Modification of Properties of Polymer Membranes by Low-Temperature Plasma Treatment, High Ener. Chem., 43 (2009) 181–188.

DOI: 10.1134/s0018143909030059

Google Scholar

[5] T. Demina, D. Zaytseva-Zotova, M. Yablokov, A. Gilman, T. Akopova, E. Markvicheva, A. Zelenetskii, DC discharge plasma modification of chitosan/gelatin/PLLA films: Surface properties, chemical structure and cell affinity, Surface & Coatings Technology 207 (2012).

DOI: 10.1016/j.surfcoat.2012.07.059

Google Scholar

[6] A.B. Gil'man, Low-Temperature Plasma Treatment as an Effective Method for Surface Modification of Polymeric Materials, High Energy Chemistry, 37 (2003) 17–23.

Google Scholar

[7] N. De Geyter, A. Sarani, T. Jacobs, A. Yu. Nikiforov, T. Desmet, P. Dubruel, Surface Modification of Poly-e-Caprolactone with an Atmospheric Pressure Plasma Jet, Plasma Chem Plasma Process 33 (2013) 165–175.

DOI: 10.1007/s11090-012-9419-3

Google Scholar

[8] W. Liu, J. Zhan, Y. Su, T. Wu, C. Wu, S. Ramakrishna, X. Mo, S.S. Al-Deyab, M. El-Newehy, Effects of plasma treatment to nanofibers on initial cell adhesion and cell morphology, Coll. Surf. B: Biointerfaces 113 (2014) 101-106.

DOI: 10.1016/j.colsurfb.2013.08.031

Google Scholar

[9] K. Owens, R.C. Wendt, Estimation of surface free energy of polymers, J. Appl. Polym. Sci. 13 (1969) 1741D-1747D.

Google Scholar

[10] R. Morent, N. Geyter, T. Desmet, P. Dubruel, C. Leys, Plasma Surface Modification of Biodegradable Polymers: A Review, Plasma Process. Polym. 8 (2011) 171-190.

DOI: 10.1002/ppap.201000153

Google Scholar