[1]
L.T. Yap, M. Pourkashanian, Low NOx Oxy-fuel flames for uniform heat transfer, Proceedings the minerals, metals and materials society (1996) 655–660.
Google Scholar
[2]
F. Zhang, L. Lu, M.O. Lai, F.H.S. Froes, Grain growth and recrystallization of nanocrystalline Al3Ti prepared by mechanical alloying. J. Mater. Sci. 38 (2003) 613–619.
Google Scholar
[3]
Yu.V. Milman, D. B. Miracle, S.I. Chugunova, I.V. Voskoboinik, N.P. Korzhova, T.N. Legkaya, Yu.N. Podrezov, Mechanical behavior of Al3Ti intermetallics and L12 phases on its basis. Intermetallics. 9 (2001) 839–845.
DOI: 10.1016/s0966-9795(01)00073-5
Google Scholar
[4]
R.R. Adharapurapu, K.S. Vecchio, F. Jiang, A. Rohatgi, Effects of ductile laminate thickness, volume fraction, and orientation on fatigue-crack propagation in Ti-Al3Ti metal-intermetallic laminate composites, Metall. Mater. Trans. A. 36 (2005).
DOI: 10.1007/s11661-005-0251-8
Google Scholar
[5]
D.J. Harach, K.S. Vecchio, Microstructure evolution in metal-intermetallic laminate (MIL) composites synthesized by reactive foil sintering in air, Metall. Mater. Trans. A. 32 (2001) 1493–1505.
DOI: 10.1007/s11661-001-0237-0
Google Scholar
[6]
K.S. Vecchio, Synthetic multifunctional metallic-intermetallic laminate composites, JOM. Journal of the minerals, metals and materials society 57 (2005) 25–31.
DOI: 10.1007/s11837-005-0229-4
Google Scholar
[7]
J. Oh; S. Pyo; S. Lee; N. Kim Fabrication of multilayered titanium aluminide sheets by self-propagating high-temperature synthesis reaction using hot rolling and heat treatment, J. Mater. Sci. 38 (2003) 3647-3651.
Google Scholar
[8]
V. I. Mali, D.V. Pavliukova, I.A. Bataev, A.A. Bataev, A.I. Smirnov, P.S. Yartsev, V.V. Bazarkina, Formation of the intermetallic layers in Ti-Al multilayer composites, Advanced Materials Research. 311 – 313 (2011) 236-239.
DOI: 10.4028/www.scientific.net/amr.311-313.236
Google Scholar
[9]
I.A. Bataev, A.A. Bataev, V.I. Mali, D.V. Pavliukova, Structural and mechanical properties of metallic–intermetallic laminate composites produced by explosive welding and annealing, Mater. Des. 35 (2012) 225-234.
DOI: 10.1016/j.matdes.2011.09.030
Google Scholar
[10]
D. V. Pavliukova, V. I. Mali, A. A. Bataev, P. S. Yartsev, T. S. Sameyshcheva, L. I. Shevtsova, Influence of the explosively welded composites structure on the diffusion processes occurring during annealing, The 8th International forum on strategic technology 2013 (IFOST 2013). 1 (2013).
DOI: 10.1109/ifost.2013.6616967
Google Scholar
[11]
A. Rohatgi, D. d J. Harach, K.S. Vecchio, K.P. Harvey, Resistance-curve and fracture behavior of Ti-Al3Ti metallic-intermetallic laminate (MIL) composites. Acta Mater. 51 (2003) 2933–2957.
DOI: 10.1016/s1359-6454(03)00108-3
Google Scholar
[12]
U. R. Kattner, J. C. Lin, Y.A. Chang. Thermodynamic assessment and calculation of the Ti-Al system, Metall. Mater. Trans. A. 23 (1992. ) 2081–209.
DOI: 10.1007/bf02646001
Google Scholar