The Structural Particularities of Multilayered Metal-Intermetallic Composites Fabricated by the Spark Plasma Sintering Technology

Article Preview

Abstract:

Particularities of the multilayered “Ti – Al3Ti” composites structure formation were investigated. Spark plasma sintering of Ti and Al plates in cylindrical molds at the temperature of 830 оС and pressure of 3 kN during 5 minutes was found to be the most efficient technology of formation of materials with intermetallic layers. The regime described above allows fabricating material with high-quality intermetallic layers and with microhardness level up to 3800 MPa.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

800-804

Citation:

Online since:

September 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] L.T. Yap, M. Pourkashanian, Low NOx Oxy-fuel flames for uniform heat transfer, Proceedings the minerals, metals and materials society (1996) 655–660.

Google Scholar

[2] F. Zhang, L. Lu, M.O. Lai, F.H.S. Froes, Grain growth and recrystallization of nanocrystalline Al3Ti prepared by mechanical alloying. J. Mater. Sci. 38 (2003) 613–619.

Google Scholar

[3] Yu.V. Milman, D. B. Miracle, S.I. Chugunova, I.V. Voskoboinik, N.P. Korzhova, T.N. Legkaya, Yu.N. Podrezov, Mechanical behavior of Al3Ti intermetallics and L12 phases on its basis. Intermetallics. 9 (2001) 839–845.

DOI: 10.1016/s0966-9795(01)00073-5

Google Scholar

[4] R.R. Adharapurapu, K.S. Vecchio, F. Jiang, A. Rohatgi, Effects of ductile laminate thickness, volume fraction, and orientation on fatigue-crack propagation in Ti-Al3Ti metal-intermetallic laminate composites, Metall. Mater. Trans. A. 36 (2005).

DOI: 10.1007/s11661-005-0251-8

Google Scholar

[5] D.J. Harach, K.S. Vecchio, Microstructure evolution in metal-intermetallic laminate (MIL) composites synthesized by reactive foil sintering in air, Metall. Mater. Trans. A. 32 (2001) 1493–1505.

DOI: 10.1007/s11661-001-0237-0

Google Scholar

[6] K.S. Vecchio, Synthetic multifunctional metallic-intermetallic laminate composites, JOM. Journal of the minerals, metals and materials society 57 (2005) 25–31.

DOI: 10.1007/s11837-005-0229-4

Google Scholar

[7] J. Oh; S. Pyo; S. Lee; N. Kim Fabrication of multilayered titanium aluminide sheets by self-propagating high-temperature synthesis reaction using hot rolling and heat treatment, J. Mater. Sci. 38 (2003) 3647-3651.

Google Scholar

[8] V. I. Mali, D.V. Pavliukova, I.A. Bataev, A.A. Bataev, A.I. Smirnov, P.S. Yartsev, V.V. Bazarkina, Formation of the intermetallic layers in Ti-Al multilayer composites, Advanced Materials Research. 311 – 313 (2011) 236-239.

DOI: 10.4028/www.scientific.net/amr.311-313.236

Google Scholar

[9] I.A. Bataev, A.A. Bataev, V.I. Mali, D.V. Pavliukova, Structural and mechanical properties of metallic–intermetallic laminate composites produced by explosive welding and annealing, Mater. Des. 35 (2012) 225-234.

DOI: 10.1016/j.matdes.2011.09.030

Google Scholar

[10] D. V. Pavliukova, V. I. Mali, A. A. Bataev, P. S. Yartsev, T. S. Sameyshcheva, L. I. Shevtsova, Influence of the explosively welded composites structure on the diffusion processes occurring during annealing, The 8th International forum on strategic technology 2013 (IFOST 2013). 1 (2013).

DOI: 10.1109/ifost.2013.6616967

Google Scholar

[11] A. Rohatgi, D. d J. Harach, K.S. Vecchio, K.P. Harvey, Resistance-curve and fracture behavior of Ti-Al3Ti metallic-intermetallic laminate (MIL) composites. Acta Mater. 51 (2003) 2933–2957.

DOI: 10.1016/s1359-6454(03)00108-3

Google Scholar

[12] U. R. Kattner, J. C. Lin, Y.A. Chang. Thermodynamic assessment and calculation of the Ti-Al system, Metall. Mater. Trans. A. 23 (1992. ) 2081–209.

DOI: 10.1007/bf02646001

Google Scholar