Structure and Properties of Surface Layers Obtained by Atmospheric Electron Beam Cladding of Graphite-Titanium Powder Mixture onto Titanium Substrate

Article Preview

Abstract:

The cladding of titanium and graphite powders on the cp-titanium workpieces using the electron beam injected to the atmosphere provided the formation of the surface layers with a high content of high-strength carbide particles. The main structural components in cladded layers are α-Ti (αʹ-Ti), titanium carbide and graphite. Electron beam current is the main technological parameter defining a thickness of the hardened layer. An increasing beam current ranged from 20 to 23 mA leads to the cladded layer growth up to 2.9 mm. However, in this case a significant decrease of the microhardness level and the wear resistance level of the cladded layer is not observed. An average microhardess value of the hardened layer is of 430 HV. Under the conditions of friction against fixed abrasive particles, a wear resistance level of the cladded layers is by 32-45 % larger than that of cp-titanium.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

784-789

Citation:

Online since:

September 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] G. Lütjering, J. C. Williams, Titanium (Engineering Materials and Processes), second ed., Springer, (2007).

Google Scholar

[2] C. Leyens, M. Peters, Titanium and Titanium Alloys: Fundamentals and Applications, Wiley-vch, (2003).

Google Scholar

[3] P.K. Farayibi, J. Folkes, A. Clare, O. Oyelola, Cladding of pre-blended Ti–6Al–4V and WC powder for wear resistant applications, Surf. Coat. Technol. 206 (2011) 372–377.

DOI: 10.1016/j.surfcoat.2011.07.033

Google Scholar

[4] M.M. Savalani, C.C. Ng, Q.H. Li, H.C. Man, In situ formation of titanium carbide using titanium and carbon-nanotube powders by laser cladding, Appl. Surf. Sci. 258 (2012) 3173–3177.

DOI: 10.1016/j.apsusc.2011.11.058

Google Scholar

[5] B. Courant, J.J. Hantzpergue, S. Benayoun, Surface Treatment of titanium by laser irradiation to improve resistance to dry-sliding friction, Wear. 236 (1999) 39–46.

DOI: 10.1016/s0043-1648(99)00254-9

Google Scholar

[6] A. Chehrghani, M.J. Torkamany, M.J. Hamedi, J. Sabbaghzadeh, Numerical modeling and experimental investigation of TiC formation on titanium surface pre-coated by graphite under pulsed laser irradiation, Appl. Surf. Sci. 258 (2012) 2068–(2076).

DOI: 10.1016/j.apsusc.2011.04.064

Google Scholar

[7] J. Li, Z. Yu, H. Wang, Wear behaviors of an (TiB + TiC)/Ti composite coating fabricated on Ti-6Al-4V by laser cladding, Thin Solid Films. 519 (2011) 4804-4808.

DOI: 10.1016/j.tsf.2011.01.034

Google Scholar

[8] J. Li, C. Chen, T. Squartini, Q. He, A study on wear resistance and microcrack of the Ti3Al/TiAl + TiC ceramic layer deposited by laser cladding on Ti–6Al–4V alloy, Appl. Surf. Sci. 257 (2010) 1550–1555.

DOI: 10.1016/j.apsusc.2010.08.094

Google Scholar

[9] V.A. Bataev, A.A. Bataev, M.G. Golkovsky, P.I. Ostromenskij, B.V. Korotaev, Hardening of the railhead side edges by electron beam treatment in air, Metallovedenie i Termicheskaya Obrabotka Metallov, 12 (2002) 14–18.

Google Scholar

[10] D.O. Mul, M.G. Golkovsky, V.A. Bataev, D.S. Krivezhenko, Structure and properties of coatings produced by non-vacuum electron beam cladding of tantalum-reach powder on mild steel, The 8th International forum on strategic technology 2013 (IFOST 2013). 1 (2013).

DOI: 10.1109/ifost.2016.7884068

Google Scholar

[11] I.A. Bataev, A.A. Bataev, M.G. Golkovski, D.S. Krivizhenko, A.A. Losinskaya, O.G. Lenivtseva. Structure of surface layers produced by non-vacuum electron beam boriding, Appl. Surf. Sci. 284 (2013) 472– 481.

DOI: 10.1016/j.apsusc.2013.07.121

Google Scholar

[12] I.A. Bataev, M.G. Golkovskii, A.A. Bataev, A.A. Losinskaya, R. Dostovalov, A.A. Popelyukh, E.A. Drobyaz, Surface hardening of steels with carbon by non-vacuum electron-beam processing, Surf. Coat. Technol. 242 (2014) 164–169.

DOI: 10.1016/j.surfcoat.2014.01.038

Google Scholar

[13] J. Oh, S. Lee, M.G. Golkovski, Improvement of the hardness and ware resistance of (TiC, TiN)/Ti-6AI-4V surface-alloyed materials fabricated by high-energy electron-beam irradiation, Metal. Mater. Trans. 32 (2001) 2995–3005.

DOI: 10.1007/s11661-001-0174-y

Google Scholar

[14] M.G. Golkovsky, T.V. Zhuravina, I.A. Bataev, A.A. Bataev, S.V. Veselov, V.A. Bataev, E.A. Prikhodko, Cladding of tantalum and niobium on titanium by electron beam, injected in atmosphere, Adv. Mater. Res., 314 (2011) 23–27.

DOI: 10.4028/www.scientific.net/amr.314-316.23

Google Scholar

[15] O.G. Lenivtseva, O.A. Butylenkova, E.D. Golovin, M.G. Golkovsky, High-energy electron beam cladding of titanium and carbon on titanium alloy, The 8th International forum on strategic technology 2013 (IFOST 2013). 1 (2013) 152-155.

Google Scholar