Synthesis of Two Analogs of AKT Inhibitor-IV via Amine-Exchange Reactions

Article Preview

Abstract:

The N-methylphenylamino group conjugated to the 2 position of the benzimidazolium core via a vinyl group in the structure of AKT inhibitor IV was efficiently substituted by treating AKT inhibitor IV with excess of N-methylcyclohexanamine and N-methylbenzylamine. The two new compounds were characterized by 1H and 13C NMR, IR, and mass spectroscopy. The control experiment with benzimidazole precursor of AKT inhibitor IV resulted in no amine-exchange reaction, indicating that the positive charge in the benzimidazolium salt is the major factor for the activation of the terminal conjugated N-methylphenylamino group.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

108-111

Citation:

Online since:

October 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J.R. Bencsik, D Xiao, J.F. Blake, N.C. Kallan, I.S. Mitchell, K.L. Spencer, R. Xu, S.L. Gloor, M. Martinson, T. Risom, R.D. Woessner, F. Dizon, W. Wua, G.P.A. Vigers, B.J. Brandhuber, N.J. Skelton, W.W. Prior, L.J. Murray, Bioorg. Med. Chem. Lett. Vol 20 (2010).

DOI: 10.2210/pdb3qkl/pdb

Google Scholar

[2] S.F. Barnett, D. Defeo-Jones, S. Fu, P.J. Hancock, K.M. Haskell, R.E. Jones, J.A. Kahana, A.M. Kral, K. Leander, L.L. Lee, J. Malinowski, E.M. McAvoy, D.D. Nahas, R.G. Robinson, H.E.J. Huber, Biochem. Vol 385 (2005), p.399.

DOI: 10.1042/bj20041140

Google Scholar

[3] S. Masure, B. Haefner, J.J. Wesselink, E. Hoefnagel, E. Mortier, P. Verhasselt, A. Tuytelaars, R. Gordon, A. Richardson, Eur. J. Biochem. Vol. 265 (1999), p.353.

DOI: 10.1046/j.1432-1327.1999.00774.x

Google Scholar

[4] K.D. Freeman-Cook, C. Autry, G. Borzillo, D. Gordon, E. Barbacci-Tobin, V. Bernardo, D. Briere, T. Clark, M. Corbett, J. Jakubczak, S. Kakar, E. Knauth, B. Lippa, M.J. Luzzio, M. Mansour, G. Martinelli, M. Marx, K. Nelson, J. Pandit, F. Rajamohan, S. Robinson, C. Subramanyam, L. Wei, M. Wythes, and J. Morris, J. Med. Chem. Vol. 53 (2010).

DOI: 10.1021/jm1003842

Google Scholar

[5] A. Bellacosa, J.R. Testa, S.P. Staal, P.N. Tsichlis, Science Vol. 254 (1991), p.274.

Google Scholar

[6] D.A. Altomare, J.R. Testa, Oncogene Vol. 24 (2005), p.7455.

Google Scholar

[7] H. Dudek, S.R. Datta, T.F. Franke, M.J. Birnbaum, R. Yao, G.M. Cooper, R.A. Segal, D.R. Kaplan, M.E. Greenberg, Science Vol. 275 (1997), p.661.

DOI: 10.1126/science.275.5300.661

Google Scholar

[8] S.J. Wakatsuki, N. Yumoto, K. Komatsu, T. Araki, A. Sehara-Fujisawa, J. Biol. Chem. Vol. 284 (2009), p.2957.

Google Scholar

[9] T. Hunter, Cell Vol. 88 (1997), p.333.

Google Scholar

[10] R.J. Vlietstra, D.C.J.G. Van Alewijk, K.G.L. Hermans, G.J. Van Steenbrugge, J. Trapman, Cancer Res. Vol. 58 (1998), p.2720.

Google Scholar

[11] Z.Q. Yuan, M. Sun, R.I. Feldman, G. Wang, X. -L. Ma, C. Jiang, D. Coppola, S.V. Nicosia, J. Q. Cheng, Oncogene, Vol. 19 (2000), p.2324.

Google Scholar

[12] K.M. Nicholson, N.G. Anderson, Cell. Signalling Vol. 14 (2002), p.381.

Google Scholar

[13] J.Q. Cheng, C.W. Lindsley, G.Z. Cheng, H. Yang, S.V. Nicosia, Oncogene Vol. 24 (2005), p.7482.

Google Scholar

[14] M.H. Sun, S.M. Fuentes, K. Timani, D.Y. Sun, C. Murphy, Y. Lin, A. August, M.N. Teng, and B. He, J. Virol. Vol. 82 (2008), p.105.

Google Scholar

[15] Q. Sun, R.Z. Wu, S.T. Cai, Y. Lin, L. Sellers, K. Sakamoto, B. He, B.R. Peterson, J. Med. Chem. Vol. 54 (2001), p.1126.

Google Scholar