Computation for Equation of States of (Mg0.92, Fe0.08)SiO3 Perovskite Based on Mie-Grüneisen-Debye Model

Article Preview

Abstract:

In this paper, the thermal equation of state (EOS) of (Mg0.92, Fe0.08)SiO3 is computed by Birch-Murnaghan and Mie-Grüneisen-Debye equations and the related parameters are also analyzed. The value of and has little effect on EOS of (Mg0.92, Fe0.08)SiO3 perovskite. The effect of EOS of (Mg0.92, Fe0.08)SiO3 perovskite is mainly from the temperature under high pressure. The temperature is higher; the deviation of EOS relative to the PREM model is bigger. The thermal EOS complies with PREM model at T=2000K. The thermal pressure of (Mg0.92, Fe0.08)SiO3 perovskite a constant only related to temperature at the lower mantle conditions. At the same time, the EOS of (Mg0.92, Fe0.08)SiO3 perovskite is insensitive to the data of and at T=2000K, but when and the thermal EOS is more agreement with PREM model. That is to say, when the value of the and is in the range of 253~273 GPa and 3.69~4.23, (Mg0.92, Fe0.08)SiO3 is the perovskite phase, and (Mg0.92, Fe0.08)SiO3 perovskite structure remains stable at the mantle conditions.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

76-79

Citation:

Online since:

October 2014

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Knittle, E., and R. Teanloz, Synthesis and equation of state of (Mg, Fe)SiO3 Perovskite to over 100GPa, science, 235, 668-670, (1987).

DOI: 10.1126/science.235.4789.668

Google Scholar

[2] Morishima, H., E. ohtani, T. kato, O. shimomura, and T. kikegawa, Thermal expansion of MgSiO3 perovskite at 20. 5 GPa, Geophys, Res, lett. 12, 899-902, (1994).

DOI: 10.1029/94gl00844

Google Scholar

[3] Mao, H. K., R. J. Hemley, Y. Fei, etal, Effect of pressure, temperature, and Composition on lattice Parameters and density of (Mg, Fe)SiO3 perovskites to 30 GPa, J. Geophys. Res., 96, 8069-8079, (1991).

DOI: 10.1029/91jb00176

Google Scholar

[4] Funamori, N., Yagi,T. High pressure and high temperature in situ X-ray observation of MgSiO3 perovskite under lower mantle Conditions, Geophys, Res. lett. 20, 387~390, (1993).

DOI: 10.1029/92gl02960

Google Scholar

[5] Wang, Y., D. J. weidner, R.C. Liebermann, X. Liu, J. Ko, M, T. Vaughan.Y. zhao. A. Yeganeh-Haeri, and R. E. G. Pacalo, Phase transition and thermal expansion of MgSiO3 Perovskite, science, 251; 410-413, (1991).

DOI: 10.1126/science.251.4992.410

Google Scholar

[6] S. V. Singgeikin J. Zhang, J. D. Bass, Elasticity of single crystal and polycrystalline MgSiO3 perovskite by Brillouin spectroscopy, Geophys, Res. lett., vol. 31. L06620. doi: 10. 1029/ 2004GL019559, (2004).

DOI: 10.1029/2004gl019559

Google Scholar

[7] Vinet, P., J. Ferrante, J. H. Rose, and J. R. Smith, Compressibility of solid, J. Geophys. Res., 92, 9319-9325, (1987).

Google Scholar

[8] I. Jackson and S. M. Rigden, Analysis of P-V-T data: Constraints on the thermoelastic properties of high-pressure minerals, Phys, Earth. Planet lnter., 96, 85-112, (1996).

DOI: 10.1016/0031-9201(96)03143-3

Google Scholar

[9] Fiquet, G., A. Dewaele, D. Andrault, M. Kunz, and T. L. Bihan, Thermoelastic properties and crystal structure of MgSiO3 Perovskite at lower mantle pressure and temperature Conditions, Geophys: Res, Lett., 27, 21-24, (2000).

DOI: 10.1029/1999gl008397

Google Scholar

[10] Frederic.C. Marton, Joel Ita, and Ronald E. Cohen, Pressure-volume-temperature equation of state of MgSiO3 perovskite from molecular dynamics and constraints on lower mamtle composition, J. Geophys. Res. 106: 8615-8627, (2001).

DOI: 10.1029/2000jb900457

Google Scholar

[11] Wang, Y., Weidner, D.T., Liebermann, R.C. and Zhao Y., P-V-T equation of state of (Mg, Fe)SiO3 perovskite Constraints on the Composition of the lower mantle, phys. Earth planet. Inter., 83: 13-40, (1994).

DOI: 10.1016/0031-9201(94)90109-0

Google Scholar

[12] Takeniko Yagi and Nobumasa Funamori, Chemical Composition of the lower mantle inferred from the equation of state of MgSiO3 perovskite, Phil. Trans.R. Soc. Lond, A. 354, doi: 10. 1098/rsta. 1996. 0053.

Google Scholar

[13] Agnes Dewaele, Francois. Guyot, Thermal Parameters of the Earth's Lower mantle, Physics of the Earth and planetary interiors 107: 261-267. (1998).

DOI: 10.1016/s0031-9201(98)00095-8

Google Scholar

[14] Zhao.Y. and Anderson D.L., Mineral physics Constraints on the chemical. Composition of the Earth's lower mantle, phys. Earth. Planet. Inter., 85: 273-292, (1994).

DOI: 10.1016/0031-9201(94)90118-x

Google Scholar

[15] Anderson, O.L., Masuda. K., Isaak, D.G., Limits on the value of δT and γ for MgSiO3 perovskite. phys, Earth planet, Inter., 96: 31-46, (1996).

DOI: 10.1016/s0031-9201(96)03169-x

Google Scholar

[16] Juichiro Hama and Kaichi suito, Equation of state of MgSiO3 perovskite and its thermoelastic properties under lower mantle Conditions. J. Geophys. Res., 103, 7443-7462, (1998).

DOI: 10.1029/97jb03672

Google Scholar