Study of ITO/Mo/CIGS/CdS/ZnO/Al Heterojunction Thin Solar Cell by Theoretical Simulations

Article Preview

Abstract:

Now a day, copper indium gallium diselenide (CIGS) have earned special interest among thin film solar cells. The bandgap of CIGS can be varied by varying gallium composition to obtain required bandgap that meets the solar spectrum to absorb most of the photons. In present work, ITO/Mo/CIGS/CdS/ZnO/Al heterojunction thin film cell has been designed by computer simulation using AFROS-HET. The cell parameters like open circuit voltage (Voc), short circuit current (Isc), efficiency (η) and fillfactor is also evaluated under AM 1.5 radiation by keeping device temperature at 400K. The Electrical, Photoelectroluminescence characteristics and Quantum efficiency of the cell are also simulated.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

113-117

Citation:

Online since:

October 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] E. Yousfi , T. Asikainen, V. Pietu , P. Cowache, M. Powalla, D. Lincot, Cadmium-free buffer layers deposited by atomic layer epitaxy for copper indium diselenide solar cells. Thin Solid Films. 361 (2000)183–186.

DOI: 10.1016/s0040-6090(99)00860-3

Google Scholar

[2] J. Kessler, J. Wennerberg, M. Bodegard, L. Stolt, Highly efficient Cu(In, Ga)Se2 mini-modules. Sol. Ene. Mat. & Sol. Cells. 75 (2003) 35–46.

DOI: 10.1016/s0927-0248(02)00102-2

Google Scholar

[3] S.K. Gupta, P.K. Jha, Solid State Commun. 149(2009)1989-1992; S. Siebentritt, Alternative buffers for chalcopyrite solar cells. Sol. Ene. 77 (2004) 767–775.

DOI: 10.1016/j.solener.2004.06.018

Google Scholar

[4] I. Lauermann, C. Loreck, A. Grimm, R. Klenk, H. Monig, M.C. Lux-Steiner , C. Fischer , S. Visbeck, T. Niesen, Cu-accumulation at the interface between sputter-(Zn, Mg)O and Cu(In, Ga)(S, Se)2 – A key to understanding the need for buffer layers. Thin Solid Films. 515 (2007).

DOI: 10.1016/j.tsf.2006.12.172

Google Scholar

[5] C. H. Fischer, M. Bar, T. Glatzel, I. Lauermann, M.C. Lux-Steiner, Interface engineering in chalcopyrite thin film solar devices. Sol. Ene. Mat. & Sol. Cells 90 (2006) 1471–1485.

DOI: 10.1016/j.solmat.2005.10.012

Google Scholar

[6] D. Abou-Ras , G. Kostorz ,D. Hariskos, R. Menner, M. Powalla, S. Schorr, A. N. Tiwari, Structural and chemical analyses of sputtered InxSy buffer layers in Cu(In, Ga)Se2 thin-film solar cells. Thin Solid Films 517 (2009) 2792–2798.

DOI: 10.1016/j.tsf.2008.10.138

Google Scholar

[7] I. Repins, M.A. Contreras, B. Egaas, C. DeHart, J. Scharf, C.L. Perkins, B. To , R. Noufi, 19. 9%-Efficient ZnO/ CdS/CuInGaSe2 solar cell with 81. 2% fill factor. Prog. Photovol.: Res. and Appl. 16 (2008) 235–239.

DOI: 10.1002/pip.822

Google Scholar

[8] O. Kluth, G. Schoepe, B. Rech, R. Menner, M. Oertel, K. Orgassa, H. W. Schock, Comparative material study on RF and DC magnetron sputtered ZnO: Al films. Thin Solid films 502 (2006) 311–316.

DOI: 10.1016/j.tsf.2005.07.313

Google Scholar

[9] D. Herrmann, M. Oertel, R. Menner, M. Powalla . Analysis of relevant plasma parameters for ZnO: Al film deposition based on data from reactive and nonreactive DC magnetron sputtering. Surf. and Coatings Tech. 174 (2003) 229–234.

DOI: 10.1016/s0257-8972(03)00524-3

Google Scholar