Influence of Mn Site Substitution on Electrical Resistivity and Magnetoresistance Properties of Rare Earth Manganite

Article Preview

Abstract:

We investigate the effects of Cr, Ru and Sn substitution on electrical resistivity and magnetoresistance property of polycrystalline samples La0.67Sr0.33Mn1-xBxO3 (x = 0, 0.05; B= Ru, Cr and Sn) compounds. The value of M-I transition temperature (TP) decreases while resistivity increases with Cr, Ru and Sn substitution, moreover, the largest low-temperature magnetoresistance (MR %) is found at magnetic field dependent (Isotherm), which suggest that the spin-dependent scattering from internal grain regions is also responsible for the low-temperature MR %. Resistivity data have been fitted with the variable range hopping model to estimate the density of state at Fermi level. It was observed that the substitution of various transition metals in the Mn-site leads to a decrease in conductivity of the doped manganite samples, with conduction being controlled by the disorder induced localization of charge carriers.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

123-129

Citation:

Online since:

October 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] C. N. R. Rao & B. Raveau, Colossal Magnetoresistance, Charge ordering and Related Properties and Manganese Oxides, first ed., World Scientific, Singapore, (1998).

DOI: 10.1142/3605

Google Scholar

[2] Y. Tokura, Colossal Magnetoresistive Oxides, first ed., Gordon and Breach Science, Singapore, (2000).

Google Scholar

[3] A. P. Ramirez, Colossal magnetoresistance, J. Phys: Condens. Matter. 9 (1997) 8171-8199.

DOI: 10.1088/0953-8984/9/39/005

Google Scholar

[4] D. S. Rana, K. R. Mavani, C. M. Thaker, D. G. Kuberkar, D. C. Kundaliya, S. K. Malik, Disorder effects in (LaTb)0. 5(CaSr)0. 5MnO3 compound, J. Appl. Phys. 95 (2004) 7097-7099.

DOI: 10.1063/1.1687257

Google Scholar

[5] D. S. Rana, C.M. Thaker, K.R. Mavani, D.G. Kuberkar, D. C. Kundaliya and S. K. Malik, Magnetism and electronic transport of La0. 7-2xEuxCa0. 3SrxMnO3: Effect of simultaneous size disorder and carrier density, J. Appl. Phys. 95 (2004) 4934-4940.

DOI: 10.1063/1.1667258

Google Scholar

[6] A. Khare, A. Bodhaye, D. Bhargava, R. J. Choudhary, S. P. Sanyal, Study of Structural, Transport and Magneto-Resistive Properties of La0. 7Ca0. 3-xCexMnO3, Phys. B: Cond. Matt. 404 (2009) 3602–3607.

DOI: 10.1016/j.physb.2009.06.008

Google Scholar

[7] M. Talati, P. K. Jha, Pressure-dependent phonon properties of La0. 7Sr0. 3MnO3, Phys. Rev. B 74 (2006) 134406-1-134406-9.

Google Scholar

[8] L. Seethalakshmi, V. Sridharan, D. V. Natarajan, R. Rawat, S. Chandra, V. S. Sastry, T. S. Radhakrishnan, Structure, transport and magnetism of La0. 67Ca0. 33Mn1−xTaxO3, J. Magn. Magn. Mater. 279 (2004) 41-50.

Google Scholar

[9] B. Raveau, The crucial role of mixed valence in the magnetoresistance properties of manganites and cobaltites, Phil. Trans. R. Soci. A 366 (2008) 83-92.

DOI: 10.1098/rsta.2007.2141

Google Scholar

[10] Y. Sun, X. Xu, Y. Zhang, Effects of Cr doping in La0. 67Ca0. 33MnO3: Magnetization, resistivity, and thermopower, Phys. Rev. B 63 (2000) 054404-054408.

Google Scholar

[11] D. Bhargava, T. M. Tank, A. Bodhaye, S. P. Sanyal, Transport and Magneto-transport Properties of Ln0. 67Sr0. 33MnO3 (Ln = La, Pr, and Nd), Trans. Indi. Inst. Met. 65 (2012) 443-447.

DOI: 10.1007/s12666-012-0155-4

Google Scholar

[12] T. M. Tank, V. Sridharan, S. S. Samatham, V. Ganesan, S. P. Sanyal, Effect of Sn substitution on structural and transport properties of (La0. 67Sr0. 33)MnO3, AIP Conf. Proc. 1536 (2013) 573-574.

DOI: 10.1063/1.4810356

Google Scholar

[13] R. D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides, Acta Crystall. Sect. A 32 (1976) 751-767.

DOI: 10.1107/s0567739476001551

Google Scholar

[14] N. Paunovic, Z. V. Popovic, A. Cantarero, F. Sapina, Influence of Mn Site Doping on Electrical Resistivity of Polycrystalline La1-yAyMn1-xBxO3 (A=Ba, Sr; B=Cu, Cr, Co) Manganites, Sci. of Sint. 40 (2008) 55-61.

DOI: 10.2298/sos0801053p

Google Scholar

[15] Z. W. Li, A. H. Morrish, J. Z. Jiang, Magnetoresistance and phase composition of La-Sn-Mn-O systems, Phys. Rev. B 60 (1999) 10284-10290.

DOI: 10.1103/physrevb.60.10284

Google Scholar

[16] Y. Sun, X. Xu, Y. Zhang, Variable-range hopping of small polarons in mixed-valence manganites, J. Phys. Condens. Matt. 12 (2000) 10475-10479.

DOI: 10.1088/0953-8984/12/50/309

Google Scholar

[17] M. Viret, L. Ranno, J. M. D. Coey, Magnetic localization in mixed-valence manganites, Phys. Rev. B 55, (1997) 8067-8071.

DOI: 10.1103/physrevb.55.8067

Google Scholar

[18] A. Banerjee, S. Pal, S. Bhattacharya, B. K. Chaudhuri, Nature of small-polaron hopping conduction and the effect of Cr doping on the transport properties of rare-earth manganite LaPbMnCrO, J. Chem. Phys. 115 (2001) 1550-1555.

DOI: 10.1063/1.1378018

Google Scholar

[19] A. de Andres, M. Garcia-Hernandez, J. L. Martinez, Conduction channels and magnetoresistance in polycrystalline manganites, Phys. Rev. B 60 (1999) 7328-7334.

DOI: 10.1103/physrevb.60.7328

Google Scholar

[20] S. Ju, H. Sun, Z.Y. Li, Study of field dependence of magnetoresistance of polycrystalline perovskite maganites, Phys. Letts A 300 (2002) 666-671.

DOI: 10.1016/s0375-9601(02)00896-4

Google Scholar