[1]
N.F. Hamedani, A.R. Mahjoub, A.A. Khodadadi, Y. Mortazavi, Microwave assisted fast synthesis of various ZnO morphologies for selective detection of CO, CH4 and ethanol, Sens. and Actuators B: Chemical , 156 (2011) 737–742.
DOI: 10.1016/j.snb.2011.02.028
Google Scholar
[2]
Matsubara K, Fons P, Iwata K, Yamada A, Sakurai K, Tampo H, et al., ZnO transparent conducting films deposited by pulsed laser deposition for solar cell applications, Thin Solid Films , 431-432 (2003) 369-372.
DOI: 10.1016/s0040-6090(03)00243-8
Google Scholar
[3]
S.K. Gupta, P.K. Jha, Modified phonon confinement model for size dependent Raman shift and linewidth of silicon nanocrystals, Solid State Commun. 149, (2009), 1989-(1992).
DOI: 10.1016/j.ssc.2009.08.036
Google Scholar
[4]
S.K. Gupta, R. Desai, P.K. Jha, S. Sahu, D. Kirin, Titanium dioxide synthesized using titanium chloride: size effect study using Raman spectroscopy and photoluminescence, J. of Raman Spectroscopy 41 (2010)350-355.
DOI: 10.1002/jrs.2427
Google Scholar
[5]
Zhang Q, Xie C, Zhang S, Wang A, Zhu B, Wang L, et al. , Identification and pattern recognition analysis of Chinese liquors by doped nano ZnO gas sensor array, Sens. and Actuators B : Chemical, 110 ( 2005) , 370-376.
DOI: 10.1016/j.snb.2005.02.017
Google Scholar
[6]
Lin H M, Tzeng SJ, Hsiau PJ, Tsai WL., Electrode effects on gas sensing properties of nanocrystalline zinc oxide , Nanostruct Mater, 10 (1998); 465–477.
DOI: 10.1016/s0965-9773(98)00087-7
Google Scholar
[7]
Huang WJ, Fang GC, Wang CC, A nanometer-ZnO catalyst to enhance the ozonation of 2, 4, 6-trichlorophenol in water, Colloids and Surfaces A : Physicochem and Eng Aspects, 260(2005): 45-51.
DOI: 10.1016/j.colsurfa.2005.01.031
Google Scholar
[8]
B. Ismail, M.A. Abaab, B. Rezig, Structural and electrical properties of ZnO films prepared by screen printing technique, Thin Solid Films, 383 (2001) 92–94.
DOI: 10.1016/s0040-6090(00)01787-9
Google Scholar
[9]
S.C. Navale, V. Ravia, I.S. Mulla, S.W. Gosavi, S.K. Kulkarni, Low temperature synthesis and NOx sensing properties of nanostructured Al-doped ZnO, Sensors and Actuators B: Chemical, 126 (2007) 382–386.
DOI: 10.1016/j.snb.2007.03.019
Google Scholar
[10]
Lingna W, Mamoun M., Synthesis of zinc oxide nanoparticles with controlled morphology, J Mater Chem , 9 91999) , 2871–2878.
Google Scholar
[11]
Hong R Y, Li J H, Chen L L, Liu D Q, Li H Z, Zheng Y, et al. , Synthesis, surface modification and photocatalytic property of ZnO nanoparticles, Powder Technol , 189 (2009) , 426–432.
DOI: 10.1016/j.powtec.2008.07.004
Google Scholar
[12]
V.R. Kumar, P.R.S. Wariar, V.S. Prasad, J. Koshy, A novel approach for the synthesis of nanocrystalline zinc oxide powders by room temperature co-precipitation method, Materials Letters 65 (2011) 2059–(2061).
DOI: 10.1016/j.matlet.2011.04.015
Google Scholar
[13]
Rosari Saleh, Nadia Febiana Djaja, Suhendro Purbo Prakoso, The correlation between magnetic and structural properties of nanocrystalline transition metal-doped ZnO particles prepared by the co-precipitation method, Journal of Alloys and Compounds 546, (2013).
DOI: 10.1016/j.jallcom.2012.08.056
Google Scholar
[14]
S. Yılmaz, E. McGlynn, E. Bacaksız, J. Cullen, R.K. Chellappan, Structural, optical and magnetic properties of Ni-doped ZnO micro-rods grown by the spray pyrolysis method, Chemical Physics Letters 525-526, (2012), 72-76.
DOI: 10.1016/j.cplett.2012.01.003
Google Scholar
[15]
Y. Tak, D. Park, K. Yong, Characterization of ZnO nanorod arrays fabricated on Si wafers using a low-temperature synthesis method, J. Vac. Sci. Technol. B , 24 (2006) (2047).
DOI: 10.1116/1.2216714
Google Scholar
[16]
Dongwoon Jung, Syntheses and characterizations of transition metal-doped ZnO. Solid State Sciences , 12 (2010) 466–470.
DOI: 10.1016/j.solidstatesciences.2009.12.009
Google Scholar
[17]
A. G. Walton, Properties and formation of precipitate, Interscience Publicationm, New York, (1967).
Google Scholar
[18]
C. H. Bhosale, M. D. Uplane , P. S. Patil and C. D. Lokhande, Preparation and properties of sprayed antimony trisulphide films, Thin solid films, 248, (1994), 137-139.
DOI: 10.1016/0040-6090(94)90001-9
Google Scholar
[19]
D. A. Skoog and D. M. West, Fundamentals of analytical chemistry, 2nd edition, Holt, Rinehart and Winston, New York (1980).
Google Scholar
[20]
Sze S. M. 1969, Physics of semiconductor devices, New York, Wiely 2nd edition.
Google Scholar
[21]
Clas persson, Thin films ZnO/CdS/CuIn1-x GaxSe2 solar cells: Anomalous properties of the CuIn1-x GaxSe2 Absorber , Dept. of material Science & Engineering, Royal Institute Technology, Sweden.
DOI: 10.1590/s0103-97332006000600040
Google Scholar
[22]
H. Gomez, A. Moldonado, R. castanedo-Perez, G. Torres-Delgado & M. de La L. olvera, Properties of Al-doped ZnO thin films deposited by a chemical spray process, Material Charcterization, 58 (2007), 708-714.
DOI: 10.1016/j.matchar.2006.11.012
Google Scholar
[23]
Kireev P. S., Semiconductor Physics, Chap. 2, 2nd edition, Mir publication, (1975).
Google Scholar
[24]
P. Sagar, M. Kumar, R. M. Mehra, Electrical & optical properties of Sol-gel derived ZnO: Al thin films, Material Science-Poland, 23, No. 3, (2005) 685.
Google Scholar
[25]
M.L. Curri, R. Comparelli, P.D. Cozzli, G. Mascolo, A. Agostiano, Colloidal oxide nanoparticles for the photocatalytic degradation of organic dye Mater. Sci. and Eng.: C, 23, (2003) , 285–289.
DOI: 10.1016/s0928-4931(02)00250-3
Google Scholar
[26]
V.P. Kamat, R. Huehn, R. Nicolaescu, A 'Sense and Shoot', Approach for photocatalytic degradation of organic contaminants in water, J. Phys. Chem. B 106(4), (2002) 788–794.
DOI: 10.1021/jp013602t
Google Scholar