Synthesis & Study of Properties of Doped ZnO Pellets for Gas Sensing Application

Article Preview

Abstract:

The ZnO and ZnO: Cu Pellets are fabricated by using the Co-Precipitation technique. The effect of different concentration of doping agent on the optical, structural and surface morphological properties of ZnO Pellets were investigated as a function of Cu concentration from 0 to 30 at % in this paper. The spectrophotometric properties of the pellets were carried out for the absorbance and transmittance. The pellets showed absorbance ranging from 0.1-3.0 in UV-VIS regions. The maximum percentage transmittance is 90% within the same region. As the concentration of dopant increases, the pellets become more brittle and the band gap decreases. The XRD pattern reveals the polycrystalline nature of the powder and it is also found that, the lattice spacing is changed with Cu doping in ZnO. This is purely due to distortion of lattice owing to the strain induced by the Cu doping. SEM studies show that, as concentration of copper increases, the porous morphology is vanished giving more dense structure.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

99-105

Citation:

Online since:

October 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] N.F. Hamedani, A.R. Mahjoub, A.A. Khodadadi, Y. Mortazavi, Microwave assisted fast synthesis of various ZnO morphologies for selective detection of CO, CH4 and ethanol, Sens. and Actuators B: Chemical , 156 (2011) 737–742.

DOI: 10.1016/j.snb.2011.02.028

Google Scholar

[2] Matsubara K, Fons P, Iwata K, Yamada A, Sakurai K, Tampo H, et al., ZnO transparent conducting films deposited by pulsed laser deposition for solar cell applications, Thin Solid Films , 431-432 (2003) 369-372.

DOI: 10.1016/s0040-6090(03)00243-8

Google Scholar

[3] S.K. Gupta, P.K. Jha, Modified phonon confinement model for size dependent Raman shift and linewidth of silicon nanocrystals, Solid State Commun. 149, (2009), 1989-(1992).

DOI: 10.1016/j.ssc.2009.08.036

Google Scholar

[4] S.K. Gupta, R. Desai, P.K. Jha, S. Sahu, D. Kirin, Titanium dioxide synthesized using titanium chloride: size effect study using Raman spectroscopy and photoluminescence, J. of Raman Spectroscopy 41 (2010)350-355.

DOI: 10.1002/jrs.2427

Google Scholar

[5] Zhang Q, Xie C, Zhang S, Wang A, Zhu B, Wang L, et al. , Identification and pattern recognition analysis of Chinese liquors by doped nano ZnO gas sensor array, Sens. and Actuators B : Chemical, 110 ( 2005) , 370-376.

DOI: 10.1016/j.snb.2005.02.017

Google Scholar

[6] Lin H M, Tzeng SJ, Hsiau PJ, Tsai WL., Electrode effects on gas sensing properties of nanocrystalline zinc oxide , Nanostruct Mater, 10 (1998); 465–477.

DOI: 10.1016/s0965-9773(98)00087-7

Google Scholar

[7] Huang WJ, Fang GC, Wang CC, A nanometer-ZnO catalyst to enhance the ozonation of 2, 4, 6-trichlorophenol in water, Colloids and Surfaces A : Physicochem and Eng Aspects, 260(2005): 45-51.

DOI: 10.1016/j.colsurfa.2005.01.031

Google Scholar

[8] B. Ismail, M.A. Abaab, B. Rezig, Structural and electrical properties of ZnO films prepared by screen printing technique, Thin Solid Films, 383 (2001) 92–94.

DOI: 10.1016/s0040-6090(00)01787-9

Google Scholar

[9] S.C. Navale, V. Ravia, I.S. Mulla, S.W. Gosavi, S.K. Kulkarni, Low temperature synthesis and NOx sensing properties of nanostructured Al-doped ZnO, Sensors and Actuators B: Chemical, 126 (2007) 382–386.

DOI: 10.1016/j.snb.2007.03.019

Google Scholar

[10] Lingna W, Mamoun M., Synthesis of zinc oxide nanoparticles with controlled morphology, J Mater Chem , 9 91999) , 2871–2878.

Google Scholar

[11] Hong R Y, Li J H, Chen L L, Liu D Q, Li H Z, Zheng Y, et al. , Synthesis, surface modification and photocatalytic property of ZnO nanoparticles, Powder Technol , 189 (2009) , 426–432.

DOI: 10.1016/j.powtec.2008.07.004

Google Scholar

[12] V.R. Kumar, P.R.S. Wariar, V.S. Prasad, J. Koshy, A novel approach for the synthesis of nanocrystalline zinc oxide powders by room temperature co-precipitation method, Materials Letters 65 (2011) 2059–(2061).

DOI: 10.1016/j.matlet.2011.04.015

Google Scholar

[13] Rosari Saleh, Nadia Febiana Djaja, Suhendro Purbo Prakoso, The correlation between magnetic and structural properties of nanocrystalline transition metal-doped ZnO particles prepared by the co-precipitation method, Journal of Alloys and Compounds 546, (2013).

DOI: 10.1016/j.jallcom.2012.08.056

Google Scholar

[14] S. Yılmaz, E. McGlynn, E. Bacaksız, J. Cullen, R.K. Chellappan, Structural, optical and magnetic properties of Ni-doped ZnO micro-rods grown by the spray pyrolysis method, Chemical Physics Letters 525-526, (2012), 72-76.

DOI: 10.1016/j.cplett.2012.01.003

Google Scholar

[15] Y. Tak, D. Park, K. Yong, Characterization of ZnO nanorod arrays fabricated on Si wafers using a low-temperature synthesis method, J. Vac. Sci. Technol. B , 24 (2006) (2047).

DOI: 10.1116/1.2216714

Google Scholar

[16] Dongwoon Jung, Syntheses and characterizations of transition metal-doped ZnO. Solid State Sciences , 12 (2010) 466–470.

DOI: 10.1016/j.solidstatesciences.2009.12.009

Google Scholar

[17] A. G. Walton, Properties and formation of precipitate, Interscience Publicationm, New York, (1967).

Google Scholar

[18] C. H. Bhosale, M. D. Uplane , P. S. Patil and C. D. Lokhande, Preparation and properties of sprayed antimony trisulphide films, Thin solid films, 248, (1994), 137-139.

DOI: 10.1016/0040-6090(94)90001-9

Google Scholar

[19] D. A. Skoog and D. M. West, Fundamentals of analytical chemistry, 2nd edition, Holt, Rinehart and Winston, New York (1980).

Google Scholar

[20] Sze S. M. 1969, Physics of semiconductor devices, New York, Wiely 2nd edition.

Google Scholar

[21] Clas persson, Thin films ZnO/CdS/CuIn1-x GaxSe2 solar cells: Anomalous properties of the CuIn1-x GaxSe2 Absorber , Dept. of material Science & Engineering, Royal Institute Technology, Sweden.

DOI: 10.1590/s0103-97332006000600040

Google Scholar

[22] H. Gomez, A. Moldonado, R. castanedo-Perez, G. Torres-Delgado & M. de La L. olvera, Properties of Al-doped ZnO thin films deposited by a chemical spray process, Material Charcterization, 58 (2007), 708-714.

DOI: 10.1016/j.matchar.2006.11.012

Google Scholar

[23] Kireev P. S., Semiconductor Physics, Chap. 2, 2nd edition, Mir publication, (1975).

Google Scholar

[24] P. Sagar, M. Kumar, R. M. Mehra, Electrical & optical properties of Sol-gel derived ZnO: Al thin films, Material Science-Poland, 23, No. 3, (2005) 685.

Google Scholar

[25] M.L. Curri, R. Comparelli, P.D. Cozzli, G. Mascolo, A. Agostiano, Colloidal oxide nanoparticles for the photocatalytic degradation of organic dye Mater. Sci. and Eng.: C, 23, (2003) , 285–289.

DOI: 10.1016/s0928-4931(02)00250-3

Google Scholar

[26] V.P. Kamat, R. Huehn, R. Nicolaescu, A 'Sense and Shoot', Approach for photocatalytic degradation of organic contaminants in water, J. Phys. Chem. B 106(4), (2002) 788–794.

DOI: 10.1021/jp013602t

Google Scholar