Transport Properties of Hexagonal YMn0.9Ru0.1O3 Compound

Article Preview

Abstract:

We report that the polycrystalline hexagonal YMn0.9Ru0.1O3 compound can be synthesized by using conventional solid state reaction method at a sintering temperature of 128000. The reflections/diffraction peaks observed in the XRD measurements matched exactly with standard (JCPDS) data for the hexagonal crystal structure of YMnO3 without any extra peaks due to impurities. The dc electrical measurements of the as prepared YMn0.9Ru0.1O3 compound have been carried out below room temperature down to the minimum possible. The electrical measurement of the Ru doped YMnO3 compounds reveal that the resistivity is suppressed with the addition of the ruthenium content and a consistent increase in the resistivity have been witnessed with decreasing temperature. In generalized sense the observed resistivity versus temperature behavior in the studied compounds suggests the induction semiconductor-like character in the material.KeywordsXRD, Electrical resistivity, Manganites

You might also be interested in these eBooks

Info:

Periodical:

Pages:

151-154

Citation:

Online since:

October 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R. von Helmolt, J. Wecker, B. Holzapfel, L. Schultz, K. Samwer, Phys. Rev. Lett. 71, (1993) 2331.

Google Scholar

[2] S. Jin, T. H. Tiefel, M. McCormack, R. A. Fastnacht, R. Ramesh, L. H. Chen, Science 264 (1994)413.

Google Scholar

[3] C. Zener, Phys. Rev. 82 (1951) 403.

Google Scholar

[4] Prafulla K. Jha and Sankar P. Sanyal  Physica C 262, 259(1996).

Google Scholar

[5] P. -G. de Gennes, Phys. Rev. 118 (1960)141.

Google Scholar

[6] J. R. Sun, G. H. Rao, B. G. Shen, H. K. Wong, Appl. Phys. Lett. 73 (1998) 2998.

Google Scholar

[7] K. Ghosh, S. B. Ogale, R. Ramesh, R. L. Greene, T. Venkatesan, K. M. Gapchup, R. Bathe, S. I. Patil, Phys. Rev. B 59 (1999) 533.

Google Scholar

[8] K. M. Krishnan, H. L. Ju, Phys. Rev. B 60 (1999) 14793.

Google Scholar

[9] Mina Talati and Prafulla K. Jha  Compt. Mat. Sci 37, 64 (2006).

Google Scholar

[10] V.M. Goldschmidt, Naturwissenschaften 14 (1926) 477.

Google Scholar

[11] C. A. Randall, A. S. Bhalla, T. R. Shrout, L. E. Cross, Classification and consequences of complex lead perovskite ferroelectrics with regard to B-site cation order, J. Mater. Res. page 529 (1990) 14.

DOI: 10.1557/jmr.1990.0829

Google Scholar

[12] Mina T. and Prafulla K. Jha Phys. Rev. B 74, 134406(2006).

Google Scholar

[13] O. Muller, R. Roy, The major ternary structural families. Springer, Heidelberg (1974).

Google Scholar

[14] Sir Nevill Mott, Conduction in Non-Crystalline Materials. Clarendon Press, Oxford, (1993).

Google Scholar

[15] G.J. Snyder, C.H. Booth, F. Bridges, R. Hiskes, S. Dicarolis, M.R. Beasley, T.H. Geballe, Phys. Rev. B 55 (1997) 6453.

Google Scholar

[16] A. Yu. Ignatov , A.P. Menushenkov , V.A. Chernov Physica C271, 6(1996).

Google Scholar