SrTiO3 Functional Ceramics Thin Film Prepared by Self-Assembled Monolayers with the Liquid Phase Deposition Method on Silicon Substrates

Abstract:

Article Preview

In this article, (NH4)2TiF6, SrNO3 and H3BO3 were used as raw materials to prepare the precursor solution with the ratio of AHFT/SN/BA=1:1:3. The thin films of SrTiO3 were fabricated on the functional silicon substrates (100) by self-assembled monolayers (SAMs) with the liquid phase deposition (LPD). This article also studied the effects of wet state and the deposition temperature of the precursor solution before and after the functionalization of silicon substrate on the thin film growth. The results indicated that after the immersion in OTS for 30min, the surface contact angle of the silicon substrate changed from 24.64° to 100.91°. The substrate appeared hydrophobic property and it was irradiated by UV light for 30min. Then the surface contact angle of the substrate decreased to 5.00°. The substrate appeared hydrophilicity. The concentration of the precursor solution was 0.025 mol/L, the deposition temperature was 40°C and the deposition time was 9h, which were all helpful to SrTiO3 crystallization. XRD and SEM were used to characterize the physical phase of thin film and surface morphology at 600 °C with annealing and heat retaining for 2h. The results indicated that the thin film prepared by the mono-crystal Si substrate was SrTiO3 thin film with better crystalline. On the crystal surfaces of (110), (100), (200) and (211), there appeared the obvious diffraction peaks. The SrTiO3 grains on the surface had the clear outline and were regular and long columnar crystals.

Info:

Periodical:

Advanced Materials Research (Volumes 105-106)

Edited by:

Wei Pan and Jianghong Gong

Pages:

270-273

DOI:

10.4028/www.scientific.net/AMR.105-106.270

Citation:

H. J. Ren et al., "SrTiO3 Functional Ceramics Thin Film Prepared by Self-Assembled Monolayers with the Liquid Phase Deposition Method on Silicon Substrates", Advanced Materials Research, Vols. 105-106, pp. 270-273, 2010

Online since:

April 2010

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.