Synthesis and Identification of a Hyperbranched Polymer of Tris(8-hydroxyquinoline) Aluminum Linked with Ethylene Glycol

Article Preview

Abstract:

In this paper the authors discribed the convergent synthesis of a novel hyperbranched polymer, tris(8-hydroxyquinoline) aluminum (Alq3) linked with ethylene glycol, and the indentification of the polymer by UV/vis spectra, photoluminescence spctra(PL),1H NMR spectra, element analysis (EA), differential scanning calorimetry (DSC), gel permeation chromatography (GPC), thermal gravimetric analysis (TGA), Cyclic voltammetry (CV), etc.. By introducing Alq3 into the hyperbranched polymer, which was connected with alkoxy chain, the electron injection and transport properties were improved. The maximum absorption peak of the polymer is 58nm blue-shifted, but the emission peak of the polymer is 32nm red-shifted to Alq3 in chloroform soltion. The optical energy band-gap estimated from the absorption edges is 2.845eV. These optical characters of it indicated that the operation, connecting Alq3 with ethylene glycol, could increase the energy band-gap but make the photos easier to transfer between the HOMO and LUMO energy levels.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 105-106)

Pages:

305-309

Citation:

Online since:

April 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. H. Burroughes, D.D.C. Bradley, A.R. Brown, et al.: Nature Vol. 347(1990), p.539.

Google Scholar

[2] D. Braun and A. J. Heeger: Appl. Phys. Lett. Vol. 58(1991), p. (1982).

Google Scholar

[3] A. Sodabalapur, L. Torsi and H. E. Katz: Science Vol. 268(1995), p.270.

Google Scholar

[4] G. Yu, K. Pakbaz, and A. J. Heeger: J. Electron. Mater. Vol. 23(1994), p.925.

Google Scholar

[5] M. Yano, K. Suzuki, K. Nakatani and H. Okaniwa: Thin Solid Films Vol. 146(1987), p.75.

Google Scholar

[6] R. Tang, Z. A. Tan, C. X. Cheng, Y. F. Li and F. Xi: Polymer Vol. 46 (2005), p.5341.

Google Scholar

[7] G. A. Wen et al.: Polymer Vol. 48 (2007), p.1824.

Google Scholar

[8] Y. Zhou, Q. J. Sun, Z. A. Tan, et al.: J. Phys. Chem. C Vol. 111(2007), p.6862.

Google Scholar

[9] A. Baba, K. Onishi, W. Knoll and R. C. Advincula: J. Phys. Chem. B Vol. 108(2004), p.18949.

Google Scholar

[10] M. Guo et al.: Adv. Mater. Vol. 21( 2008), p.4167.

Google Scholar

[11] T. Michinobu, J. Inui, and H. Nishide: Organic Letters Vol. 5(2003), p.2165.

Google Scholar

[12] Y. Huang, Y. Wang, G. Sang, et al.: J. Phys. Chem. B Vol. 112(2008) p.13476.

Google Scholar

[13] Q. Y. He et al.: Euro. Poly. J. Vol. 44(2008), p.3169.

Google Scholar

[14] Y. P. Zou, M. X. Wan, G. Y. Sang and Y. F. Li: Adv. Funct. Mater. Vol. 18(2008), p.2724.

Google Scholar

[15] A. Mishra, P. K. Nayak and N. Periasamy: Tetra. Lett. Vol. 45(2004), p.6265.

Google Scholar

[16] H. Zeng, W. Huang and J. L. Shi: Chem. Commun., Vol. 41(2006), p.880.

Google Scholar

[17] D. Ma et al.: Appl. Phys. Lett. Vol. 82(2003), p.1296.

Google Scholar

[18] J. J. Wang, K. D. Oyler and S. Bernhard: Inorg. Chem. Vol. 46(2007), p.5700.

Google Scholar

[19] V. A. montes et al.: J. Am. Chem. Soc. Vol. 131(2009), p.1787.

Google Scholar

[20] J. H. Burckhalter and R. I. Leib: J. Org. Chem. Vol. 26(1961), p. (2078).

Google Scholar

[21] G. Persaud and F. F. Cantwell: Anal. Chem. Vol. 64(1992), p.89.

Google Scholar

[22] T. B. Shah, H. S. Patel and R. B. Dixit: Synth. Teact. Inorg. Met. Org. Chem. Vol. 31(2001), p.649.

Google Scholar

[23] J. L. Bredas, R. Silbey, D. S. Boudreux, et al.: J. Am. Chem. Soc. Vol. 105(1983), p.6555.

Google Scholar