Effects of Sintering Temperature on Microstructure and Properties in TiO2 Varistor Ceramics

Article Preview

Abstract:

The effects of sintering temperature on microstructure, micro-composition, barrier structure and electrical properties of TiO2 varistors ceramics were investigated. The microstructures and chemical compositions of grains in TiO2 ceramics were measured by SEM and EDS. Based on the thermo electronic emission theory, Grain boundaries barrier structure was calculated by analyzing electrical properties of samples. The sample sintered at 1350°C exhibits better microstructure and properties. The grains size of the TiO2 sample sintered at 1350°C is about 15m, and other electrical properties are as follows: solid solubility of donor doping Nb5+ cation solute in TiO2 grains of 1.49mol%, barriers height of 0.28ev, barriers width of 48nm, varistor voltages of 5.25V/mm, non-linear coefficient of 4.2 and relative dielectric constant of 1.1×104.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 105-106)

Pages:

324-328

Citation:

Online since:

April 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] C.P. Li, J.F. Wang, W.B. Su, et al.: Materials Letters. Vol. 57 (2003), p.1400.

Google Scholar

[2] F.M. ming Meng: Materials Science and Engineering B. Vol. 117 (2005), p.77.

Google Scholar

[3] E. J. Harvey,K. R. Whittle,G. R. Lumpkin, et al.: J. Solid State Chem. Vol. 178 (2005) , pp.800-810.

Google Scholar

[4] K. Kapoor, S.V. Ramana Rao, Sheela, et al.: Journal of Nuclear Materials. Vol. 321 (2003) , p.331.

Google Scholar

[5] S. Tekeli: Materials and Design. Vol. 28 (2007), p.713.

Google Scholar

[6] F. Capel, M.A. Baňares, C. Moure, et al.: Materials Letters. Vol. 38 (1999), p.331.

Google Scholar

[7] P.Q. Mantas, J.L. Baptista: J. Euro. Ceram. Soc. Vol. 15 (1995), p.605.

Google Scholar

[8] M. Radecka,M. Rekas.:J. Euro. Ceram. Soc. Vol. 22 (2002), p. (2001).

Google Scholar

[9] Senda T, Bradt R C: J. Am. Ceram. Soc. Vol. 73(1990) , p.106.

Google Scholar

[10] T.J. Zhang, D.X. Zhou, S.P. Gong: J. Inorganic Mater. Vol. 14 (1999), p.21.

Google Scholar

[11] H.F. Chen, G.Y. Gan, J.K. Yan, et al.: Semiconductor Technology. Vol. 31 (2006), p.102.

Google Scholar

[12] S.X. Feng, B. Li, Q.H. Jin: ACTA PHYSICA SINICA. Vol. 49 (2000), p.1307.

Google Scholar

[13] S.L. Yang, J. wu:J. Mater. Res. Vol. 10 (1995), p.345.

Google Scholar

[14] W.Y. Wang, D.F. Zhang,T. Xu, et al.: Appl. Phys. A. Vol. 76 (2003), p.71.

Google Scholar

[15] W. Zhang, M.T. Wu, F.Y. Liu: J. Funct. Mater. Vol. 25(1994), p.137.

Google Scholar