An Amphiphilic Chitosan-Polylactide Graft Copolymer and its Nanoparticles as Fungicide Carriers

Article Preview

Abstract:

In the present study, an amphiphilic chitosan-polylactide (CS-PLA) graft copolymer was synthesized through grafting polylactide (PLA) onto water-soluble chitosan (CS), and the chemical structure of this newly developed copolymer was confirmed by FT-IR, 1H NMR and thermogravimetric analysis (TGA). Stable flusilazole-loaded nanoparticles (NS), with a size near 280.3 nm and a loading content (LC) of 29.0%, were prepared for the fungicide delivery using a nanoprecipitation method. Moreover, size, size distribution and the flusilazole LC as well as the in vitro release profile of flusilazole-loaded NS were investigated. In conclusion, the NS could provide a controlled release of flusilazole and enhance the penetration of flusilazole in the plant compared with classical flusilazole emulsifiable concentrate (EC) formulation due to their small particle size. Therefore, the CS-PLA NS could be used as fungicide carriers for the flusilazole delivery system.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

21-28

Citation:

Online since:

October 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. L. Boehm, I. Martinon, R. Zerrouk, E. Rump, H. Fessi, Nanoprecipitation technique for the encapsulation of agrochemical active ingredients, J. Microencapsul. 20 (2003) 433-441.

DOI: 10.1080/0265204021000058410

Google Scholar

[2] I. Yosha, A. Shani, S. Magdassi, Slow Release of Pheromones to the Atmosphere from Gelatin− Alginate Beads, J. Agric. Food. Chem. 56 (2008) 8045-8049.

DOI: 10.1021/jf800772g

Google Scholar

[3] M. Li, Y. Wu, Q. L. Huang, A novel chitosan-poly(lactide) copolymer and its submicron particles as imidacloprid carriers, Pest. Manag. Sci. 67 (2011) 831-836.

DOI: 10.1002/ps.2120

Google Scholar

[4] F. L. Yang, X. G. Li, F. Zhu, C. L. Lei, Structural characterization of nanoparticles loaded with garlic essential oil and their insecticidal activity against Tribolium castaneum (Herbst)(Coleoptera: Tenebrionidae) , J. Agric. Food. Chem. 57 (2009).

DOI: 10.1021/jf9023118

Google Scholar

[5] M. Kah, and T. Hofmann, Nanopesticide research: Current trends and future priorities, Environ. Int. 63 (2014) 224–235.

DOI: 10.1016/j.envint.2013.11.015

Google Scholar

[6] Y. Wu, M. J. Li, H. X. Gao, Polymeric micelle composed of PLA and chitosan as a drug carrier, J. Polym. Res. 16 (2009) 11-18.

DOI: 10.1007/s10965-008-9197-z

Google Scholar

[7] K. Letchford, H. Burt, A review of the formation and classification of amphiphilic block copolymer nanoparticulate structures: micelles, nanospheres, nanocapsules and polymersomes, Eur. J. Pharm. Biopharm. 65 (2007) 259-269.

DOI: 10.1016/j.ejpb.2006.11.009

Google Scholar

[8] J. K. Oh, Polylactide (PLA)-based amphiphilic block copolymers: synthesis, self-assembly, and biomedical applications, Soft. Matter. 7 (2011) 5096-5108.

DOI: 10.1039/c0sm01539c

Google Scholar

[9] Y. Wu, W. Yang, C. Wang, J. Hu, S. Fu, Chitosan nanoparticles as a novel delivery system for ammonium glycyrrhizinate, Int. J. Pharm. 295 (2005) 235-245.

DOI: 10.1016/j.ijpharm.2005.01.042

Google Scholar

[10] Y. Wu, Y. L. Zheng, W. L. Yang, C. C. Wang, J. H. Hu, S. K. Fu, Synthesis and characterization of a novel amphiphilic chitosan-polylactide graft copolymer, Carbohyd. Polym. 59 (2005) 165-171.

DOI: 10.1016/j.carbpol.2004.09.006

Google Scholar

[11] H. Fessi, F. Puisieux, J. P. Devissaguet, N. Ammoury, S. Benita, Nanocapsule formation by interfacial polymer deposition following solvent displacement, Int. J. Pharm. 55 (1989) R1-R4.

DOI: 10.1016/0378-5173(89)90281-0

Google Scholar

[12] P. Cabras, A. Angioni, P. Caboni, V. L. Garau, M. Melis, F. M. Pirisi, F. Cabitza, Distribution of folpet on the grape surface after treatment, J. Agric. Food. Chem. 48 (2000). 915-916.

DOI: 10.1021/jf990069u

Google Scholar

[13] K. Yasugi, T. Nakamura, Y. Nagasaki, M. Kato, K. Kataoka, Sugar-installed polymer micelles: synthesis and micellization of poly (ethylene glycol)-poly (D, L-lactide) block copolymers having sugar groups at the PEG chain end, Macromolecules. 32 (1999).

DOI: 10.1021/ma991066l

Google Scholar

[14] X. Qu, A. Wirsén, A. C. Albertsson, Synthesis and characterization of pH‐sensitive hydrogels based on chitosan and D, L‐lactic acid,  J. Appl. Polym. Sci. 74 (1999) 3193-3202.

DOI: 10.1002/(sici)1097-4628(19991220)74:13<3193::aid-app23>3.0.co;2-v

Google Scholar

[15] Y. Dong, S. S. Feng, Methoxy poly (ethylene glycol)-poly (lactide)(MPEG-PLA) nanoparticles for controlled delivery of anticancer drugs, Biomaterials. 25 (2004) 2843-2849.

DOI: 10.1016/j.biomaterials.2003.09.055

Google Scholar

[16] Y. Dong, S. S. Feng, Poly (D, L-lactide-co-glycolide)/montmorillonite nanoparticles for oral delivery of anticancer drugs, Biomaterials. 26 (2005) 6068-6076.

DOI: 10.1016/j.biomaterials.2005.03.021

Google Scholar