Investigation on the Discharge Behaviors of AZ31 and AZ61 Magnesium Alloys as Anode Material of Metal-Air Fuel Cells

Article Preview

Abstract:

AZ31 and AZ61 magnesium alloys were discharged in 1.2mol·L-1 MgSO4 solution to investigate their performances as anode fuel material in metal-air fuel cells. The results show that aluminum in alloys takes part in the discharge process and forms the colloid of Al (OH)3. The Al (OH)3 facilitates Mg (OH)2 dropping from the surface of alloy electrode, which results in the more negative and stable discharging potential of AZ61 alloy than AZ31 alloy. The discharge efficiency of AZ31 alloy is less than AZ61 alloy because of the more server negative difference effect of AZ31 alloy.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

211-214

Citation:

Online since:

October 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J.S. Lee, S.T. Kim, R.G. Cao, et al, Metal-air batteries with high energy density: Li-air versus Zn-air, Adv, Energy Mater. 1 (2011) 34-50.

DOI: 10.1002/aenm.201000010

Google Scholar

[2] Q. Hasvold, H. Henriksen, E. Melvaer, et al, Seawater battery for subsea control systems, J. Power Sources 65 (1997) 253-261.

DOI: 10.1016/s0378-7753(97)02477-4

Google Scholar

[3] F.Y. Cheng, J. Chen, Metal-air batteries: from oxygen reduction electrochemistry to cathode catalysts, Chem. Soc. Rev. 41 (2012) 2172-2192.

DOI: 10.1039/c1cs15228a

Google Scholar

[4] R.G. Cao, J.S. Lee, M.L. Liu, et al, Recent progress in pon-precious catalysts for metal-air batteries, Adv. Energy Mater. 2 (2012) 816-829.

DOI: 10.1002/aenm.201200013

Google Scholar

[5] W.Q. Yang, S.H. Yang, J.S. Guo, et al, Comparison of CNF and XC-72 carbon supported palladium electrocatalysts for magnesium air fuel cell, Carbon 45 (2007) 397-401.

DOI: 10.1016/j.carbon.2006.09.003

Google Scholar

[6] S. Mathieu, C. Rapin, J. Hazan, P. Steinmetz. Corrosion behaviour of high pressure die-cast and semi-solid cast AZ91D alloys. Corrosion Science, 44 (2002) 2737-2756.

DOI: 10.1016/s0010-938x(02)00075-6

Google Scholar

[7] G. Song, A. Atrens, D. St. John, et al, The anodic dissolution of magnesium in chloride and sulphate solution. Corrosion Science, 38(1997) 1981-(2004).

DOI: 10.1016/s0010-938x(97)00090-5

Google Scholar

[8] A. Pardo, M.C. Merino, A.E. Coy, et al, Corrosion behaviour of magnesium/aluminium alloys in 3. 5 wt. % NaCl, Corros. Sci. 50 (2008) 823-834.

DOI: 10.1016/j.corsci.2007.11.005

Google Scholar

[9] H. Altun, S. Sen, Studies on the influence of chloride ion concentration and pH on the corrosion and electrochemical behaviour of AZ63 magnesium alloy, Mater. Design25 (2004) 637-643.

DOI: 10.1016/j.matdes.2004.02.002

Google Scholar

[10] C.A. Walton, H.J. Martin, et al, Quantification of corrosion mechanisms under immersion and salt-spray environments on an extruded AZ31 magnesium alloy, Corros. Sci. 56 (2012) 194-208.

DOI: 10.1016/j.corsci.2011.12.008

Google Scholar

[11] X. Feng, Z. Xiong, Y. Si, et al, Comparison of electrochemical behaviors of AZ31 and AZ61 magnesium alloys in MgSO4 solution. Corros. Prot. 28 (2007) 553-555 (Chinese).

Google Scholar

[12] Z. Shi, M. Liu, A. Atrens, Measurement of the corrosion rate of magnesium alloys using Tafel extrapolation, Corros. Sci. 52 (2010) 579-588.

DOI: 10.1016/j.corsci.2009.10.016

Google Scholar

[13] G. Song, A. Atrens, D. St John, et al, The electrochemical corrosion of pure magnesium in 1N NaCl, Corros. Sci. 39(1997) 855-875.

DOI: 10.1016/s0010-938x(96)00172-2

Google Scholar

[14] J. Chen, J. Dong, J. Wang, et al, Effect of magnesium hydride on the corrosion behavior of an AZ91 magnesium alloy in sodium chloride solution, Corros. Sci. 50 (2008) 3610-3614.

DOI: 10.1016/j.corsci.2008.09.013

Google Scholar