First-Principle Study on Half-Metallic Ferromagnetism and Structural Stability of C-Doped Alkaline-Earth Chalcogenides under Pressure

Article Preview

Abstract:

Three half-metallic ferromagnets with NaCl structure, X4CS3 (X = Mg, Ca and Sr) are investigated by the first principle calculations based on the density functional theory in thegeneralized gradient approximation. Non-spin and spin polarized calculations are done to obtain the lattice constants, the equilibrium cell volumes, the stable energies and the magnetic moments of X4CS3, and band structure and density of states for X4CS3 at high pressure are calculated. From the calculations it has been found that X4CS3 is stable in the FM state. The corresponding lattice constants and the equilibrium cell volumes in FM are greater than that in NM. The magnetic moment of X4CS3 decrease as pressure increases, and a second order magnetic phase transition of Sr4CS3 from FM to NM state at pressure of 140GPa, but a second order magnetic phase transitions of Mg4CS3 and Ca4CS3 have not been found. According to the band and the density of states, as the pressure increases the half-metallic nature of X4CS3 destroyed.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

155-162

Citation:

Online since:

October 2014

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Wolf S A, Awschalom D D, Buhrman R A. Science, 2001, 294: 1488.

Google Scholar

[2] Groot R A, Mueller F M, van Engen P G, Buschow K H J. Phys. Rev. Lett., 1983, 50: (2024).

Google Scholar

[3] Kobayashi K, Kimura T, Sawada H, Terakura K, Tokura Y. Nature(London), 1998, 395: 677.

Google Scholar

[4] Leuken H V, de Groot R A. Phys. Rev. Lett. 1995, 74: 1171.

Google Scholar

[5] Liu B G. Phys. Rev. B, 2003, 67: 172411.

Google Scholar

[6] Cai J W, Prog. Phys. 2006, 26: 180.

Google Scholar

[7] Ren S K, Zhang F M, Du Y W. Prog. Phys. 2004, 24: 381.

Google Scholar

[8] Xie W H, Liu B G. J. Appl. Phys. 2004, 96: 3559.

Google Scholar

[9] Asano Y, Tanaka Y, Golubov A. A. Phys. Rev. Lett. 2007, 98: 107002.

Google Scholar

[10] Wan X G, Kohno M, Hu X. Phys. Rev. Lett. 2005, 95: 146602.

Google Scholar

[11] Xie W H, Liu B G, Pettifor D G. Phys. Rev. B., 2003, 68: 134407.

Google Scholar

[12] Lauer M, Valenti R, Kandpal H C, Seshadri R. Phys. Rev. B., 2004, 69: 075117.

Google Scholar

[13] Kahal L, Zaoui A, Ferhat M. J. Appl. Phys. 2007, 101: 093912.

Google Scholar

[14] Srivastava V, Rajagopalan M, Sanyal S P. Eur. Phys. J. B, 2008, 61: 131-139.

Google Scholar

[15] Liu X B, Altounian Z. J. Appl. Phys., 2007, 101: 09G511.

Google Scholar

[16] Srivastava V, Sanyal S P, Pajagopalan M. Indian Journal of Pure & Applied Physics, 2008, 46: 397-399.

Google Scholar

[17] Gokoglu G, Gulseren O. Eur. Phys. J. B, 2010, 76: 321-326.

Google Scholar

[18] Liu J, Chen L, Dong H N, Zheng R L. Appl. Phys. Lett., 2009, 95: 132502.

Google Scholar

[19] Droghettia A, Sanvito S. Appl. Phys. Lett., 2009, 94: 252505.

Google Scholar

[20] Segall M D, Lindan P J D, Probert M J, J. Phys. Condens. Matter, 2002, 14: 2717.

Google Scholar

[21] Milman V, Winkler B, White J A. Int. J. Quantum. Chem., 2000, 77: 895-910.

Google Scholar

[22] Perdew P J, Burke K, Ernzerhof M. Phys. Rev. Lett., 1996, 77: 3865-3868.

Google Scholar