Stability and Microstructure Characterization of Barrierless Cu (Sn, C) Films

Article Preview

Abstract:

Thermal stability, adhesion and electronic resistivity of the Cu alloy films with diffusion barrier elements (large atom Sn and small atom C) have been studied. Ternary Cu (0.6 at.% Sn, 2 at.% C) films were prepared by magnetron co-sputtering in this work. The microstructure and resistivity analysis on the films showed that the Cu (0.6 at.% Sn, 2 at.% C) film had better adhesion with the substrate and lower resistivity (2.8 μΩ·cm, after annealing at 600 °C for 1 h). Therefore, the doping of carbon atoms makes less effect to the resistivity by decreasing the amount of the doped large atoms, which results in the decreasing of the whole resistivity of the barrierless structure. After annealing, the doped elements in the film diffused to the interface to form self-passivated amorphous layer, which could further hinder the diffusion between Cu and Si. So thus ternary Cu (0.6 at.% Sn, 2 at.% C) film had better diffusion barrier effect. Co-doping of large atoms and small atoms in the Cu film is a promising way to improve the barrierless structure.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

163-168

Citation:

Online since:

October 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] X.J. Wang, X.P. Dong, C.H. Jiang, Thermal performance of sputtered Cu films containing insoluble Zr and Cr for advanced barrierless Cu metallization, Trans. Nonferrous Met. Soc. China. 20 (2010) 217-222.

DOI: 10.1016/s1003-6326(09)60124-2

Google Scholar

[2] M. Y. Kwak, D. H. Shin, T. W. Kang, et al, Characteristics of TiN barrier layer against Cu diffusion, Thin Solid Films. 339 (1999) 290-293.

DOI: 10.1016/s0040-6090(98)01074-8

Google Scholar

[3] C. H Lin, J.P. Chu, T. Mahalingam, et al, Sputtered copper films with insoluble Mo for Cu metallization: A thermal annealing study, J. Electron. Mater. 32 (2003) 1235-1239.

DOI: 10.1007/s11664-003-0017-2

Google Scholar

[4] J.P. Chu, C.H. Lin, Thermal stability of Cu (W) and Cu (Mo) films for advanced barrierless Cu metallization: Effects of annealing time, J. Electron. Mater. 35 (2006) 1933-(1936).

DOI: 10.1007/s11664-006-0296-5

Google Scholar

[5] Y.K. Ko, J.H. Jang, S. Lee, et al, Effects of molybdenum, silver dopants and a titanium substrate layer on copper film metallization, Journal of Materials Science. 38 (2003) 217-222.

Google Scholar

[6] P. Djemia, F. Ganot, P. Moch, et al, Brillouin scattering investigation of elastic properties of Cu-Mo solid solution thin films, J. Appl. Phys. 90 (2001) 756-762.

DOI: 10.1063/1.1378331

Google Scholar

[7] J.P. Chu, T.N. Lin, Deposition, microstructure and properties of sputtered copper films containing insoluble molybdenum, J. Appl. Phys. 85 (1999) 6462-6469.

DOI: 10.1063/1.370287

Google Scholar

[8] W.H. Lee, Y.K. Ko, J.H. Jang, et al, Microstructure control of copper films by the addition of molybdenum in an advanced metallization process, J. Electron. Mater. 30 (2001) 1042-1048.

DOI: 10.1007/bf02657730

Google Scholar

[9] J.P. Chu, C.H. Lin, Y. Y. Hsieh, Thermal performance of sputtered insoluble Cu(W) films for advanced barrierless metallization, J. Electron. Mater. 35 (2006) 76-80.

DOI: 10.1007/s11664-006-0187-9

Google Scholar

[10] J.P. Chu, C.H. Lin, V. S. John, Cu films containing insoluble Ru and RuNX on barrierless Si for excellent property improvements, Appl. Phys. Lett. 91 (2007).

DOI: 10.1063/1.2790843

Google Scholar

[11] L. A. Clevenger, B. Arcot, W. Ziegler, et al, Interdiffusion and phase formation in Cu(Sn) alloy films, J. Appl. Phys. 83 (1998) 90-99.

DOI: 10.1063/1.366728

Google Scholar

[12] K. Barmak, A. Gungor, C. Cabral, et al, Annealing behavior of Cu and dilute Cu-alloy films: Precipitation, grain growth, and resistivity, J. Appl. Phys. 94 (2003) 1605-1616.

DOI: 10.1063/1.1589593

Google Scholar

[13] L.F. Nie X.N. Li,J.P. Chu, et al, High thermal stability and low electrical resistivity carbon-containing Cu film on barrierless Si, Appl. Phys. Lett. 96 (2010).

DOI: 10.1063/1.3427408

Google Scholar

[14] C.H. Lin, W.K. Leau, C.H. Wu, High-performance copper alloy films for barrierless metallization, Appl. Surf. Sci. 257 (2010) 553-557.

DOI: 10.1016/j.apsusc.2010.07.032

Google Scholar

[15] L.Y. Xu, X.N. Li, J.P. Chu, et al, The Preparation for Cu (Sn) Films of Barrierless Interconnection, Materials Science Forum. 654-656 (2010) 1744-1747.

DOI: 10.4028/www.scientific.net/msf.654-656.1744

Google Scholar

[16] X.N. Li, J.X. Ding, L.Y. Xu, et al, Carbon-doped Cu films with self-forming passivation layer, Surf. Coat. Technol. 244 (2014) 9-14.

Google Scholar

[17] X.Y. Zhang, X.N. Li, L.F. Nie, et al, Highly stable carbon-doped Cu films on barrierless Si, Appl. Surf. Sci. 257 (2011) 3636-3640.

DOI: 10.1016/j.apsusc.2010.11.095

Google Scholar

[18] T.N. Arunagiri, Y. Zhang, O. Chyan, et al, 5 nm ruthenium thin film as a directly plateable copper diffusion barrier, Appl. Phys. Lett. 86 (2005).

DOI: 10.1063/1.1867560

Google Scholar