A Facile Synthesis and Optical Properties of Novel 2-substituted-5-naphthylmethylene Thiadiazole Derivatives

Article Preview

Abstract:

Three aryl and three naphthylmethylene derivatives containing thiadiazole ring have been synthesized. The structures of target compounds were characterized on the basis of spectral (FT-IR, 1H NMR, and MS). The optical properties were detected using UV-vis absorption spectroscopy and fluorescence spectroscopy. The absorption spectra of 1a, 2a and 3a substituted by naphthylmethylene are primarily characterized by a peak around 284 nm originating from naphthalene, which is different from that of compounds 1b, 2b and 3b. Compared to 1a and 2a (separated by a saturable atomic cluster −CH2−), the maximum absorption wavelength of 1b and 2b takes on obvious red-shifted, which is from thiadiazole and benzene with more large conjugated system. The fluorescence intensity of 2-(4-aminobenzoyl) amide-5-naphthylmethylene-1,3,4-thiadiazole (3a) was significantly higher than that of 5-(4-aminobenzoyl)-1,3,4-thiadiazole (3b) due to the presence of naphthalene.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

188-192

Citation:

Online since:

October 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] E. Vishnu Vardhan Reddy, J. Ramanatham, N. Devanna, K. Srinivasa Reddy, and D. Rajende: J. Heterocyclic Chem. Vol. 50 (2013), p. E221.

Google Scholar

[2] H. Cerecetto, A. Gerpe, M. Gonzalez, V.J. Aran, C.O. Deocariz: Mini-Rev. Med. Chem. Vol. 5 (2005), p.869.

Google Scholar

[3] Alexander K. Berg, Q.F. Yu, Steven Y. Qian, Manas K. Haldar, D.K. Srivastava: Biochimica et Biophysica Acta Vol. 1804 (2010), p.704.

Google Scholar

[4] Mark G. Epstein, Edward J. Valente, Warren J. L. Wood: J. Chem. Crystallogr. Vol. 41 (2011), p.1060.

Google Scholar

[5] M.P. Sammes, in: Comprehensive heterocyclic chemistry, edited by A.R. Katritzky, C.W. Rees, volume 6, Pergamon Press, Oxford (1984).

Google Scholar

[6] N. Vivona, S. Buscemi, V. Frenna, G. Cusmano: Adv. Heterocycl. Chem. Vol. 56 (1993), p.49.

Google Scholar

[7] T.E. Glotova, M.Y. Dvorko, A.I. Albanov, O.N. Kazheva, G.V. Shilov, O.A.D. Dyachenko: Russ. J. Org. Chem. Vol. 44 (2008), p.1532.

Google Scholar

[8] I. C. Christoforou, A.S. Kalogirou and P.A. Koutentis: Tetrahedron Vol. 65 (2009), p.9967.

Google Scholar

[9] Oleg I. Bolshakov, Lidia S. Konstantinova, Rinat R. Aysin, Natalia V. Obruchnikova, Elena D. Lubuzh and Oleg A. Rakitin: Mendeleev Commun. Vol. 20 (2010), p.212.

DOI: 10.1016/j.mencom.2010.06.010

Google Scholar

[10] Irene C. Christoforou, Andreas S. Kalogirou, Panayiotis A. Koutentis: Tetrahedron Vol. 65 (2009) , p.9967.

Google Scholar

[11] T. Besson, C.W. Rees, G. Cottenceau, A.M. Pons: Bioorg. Med. Chem. Lett. Vol. 6 (1996), p.2343.

Google Scholar

[12] G. Cottenceau, T. Besson, V. Gautier, C.W. Rees, A.M. Pons: Bioorg. Med. Chem. Lett. Vol. 6 (1996), p.529.

Google Scholar

[13] V. Thiery, C.W. Rees, T. Besson, G. Cottenceau, A.M. Pons: Eur. J. Med. Chem. Vol. 33 (1998), p.149.

Google Scholar

[14] L. Beer, A.W. Cordes, R.C. Haddon, M.E. Itkis, R.T. Oakley, R.W. Reed, C.M. Robertson: Chem. Commun. (2002), p.1872.

Google Scholar

[15] C.W. Rees: J. Heterocycl. Chem. 29 (1992), p.639.

Google Scholar

[16] J. Goerdeler, H. Linden Tetrahedron Lett. Vol. 39 (1975), P. 3387.

Google Scholar

[17] H. Fujiwara, Y. Sugishima, K. Tsujimoto: Tetra Lett. Vol. 49 (2008), p.7200.

Google Scholar