Influence of the Surfaces Characteristics on the Luminescent Property of Porous Silicon

Article Preview

Abstract:

Photoluminescence of porous silicon (PS) prepared by different etched time was studied. The photoluminescence might originate from the recombination of carriers and surface states, which was proved by FTIR, Raman spectroscopy and SEM. Furthermore, the hydrogen-related groups on the PS surface could eliminate the surface states for the blue emission, but the quantities of surface states for the green emission were depended on the uncovered area on the PS surface. Moreover, the shape of photoconductivity curve was depended on the quantities of the surface states, which also was related to the uncovered area on the PS surface. In addition, the results of the microwave-detected photoconductivity decay measurement indicated thatthe defects on the PS surface increased with the increase of the etched time, which would be related to the increase of the depth of pores.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

181-187

Citation:

Online since:

October 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] L.T. Canham, Appl. Phys. Lett. 57 (1990) 1046.

Google Scholar

[2] Yue Zhao, Dongsheng Li, Deren Yang, Physica B. 364, (2005): 180.

Google Scholar

[3] L. Tsybeskov, P. M. Fauchet, Appl. Phys. Lett. 64 (15), (1994): (1983).

Google Scholar

[4] Z.H. Xiong_, L.S. Liao, S. Yuan, Z.R. Yang, X.M. Ding, X.Y. Hou, Thin Solid Films 388, (2001):. 271.

Google Scholar

[5] E. A. Shelonin, M. V. Naidenkova, A. M. Khort, A. G. Yakovenko, A. A. Gvelesiani, I. E. Maronchuk, Semiconductors, 32(4), (1998): 443.

DOI: 10.1134/1.1187412

Google Scholar

[6] T. Frello, E. Veje, O. Leistiko, J. Appl. Phys. 79 (2), (1996): 1027.

Google Scholar

[7] Baohui Wang, Dejun Wang, Lihua Zhang, Tiejin Li, J. Phys. Chem. Solids. 58(1), (1997): 25-31.

Google Scholar

[8] V. Duzhko, F. Koch, Th. Dittrich, J. Appl. Phys., 91(11), (2002): 9432.

Google Scholar

[9] Yue Zhao, Jie Zhao, Dongsheng Li, Wenbin Sang, Deren Yang, Minhua Jiang. Chinese Journal of Luminescence. 28(1), (2007): 101.

Google Scholar

[10] Fukuda Y, Furuya K, Ishikawa N, Saito T, J Appl Phys. 82(11), (1997): 5718.

Google Scholar

[11] S. Ghosh, Kwangpyo Hong, Chongmu Lee. Materials Science and Engineering B 96, (2002) : 53-59.

Google Scholar

[12] A.J. Kontkiewicz, A.M. Kontkiewicz, J. Siejka, S. Sen, G. Nowak, A.M. Hoff, P. Sakthivel, K. Ahmed, P. Mukherjee, S. Witanachchi, J. Lagowski, Appl. Phys. Lett. 65 (11), (1994): 1436.

DOI: 10.1063/1.112973

Google Scholar

[13] M.K. Lee, K.R. Peng, Appl. Phys. Lett. 62(24), (1993): 3159.

Google Scholar

[15] J. L. Gole, F. P. Dudel, D. Grantier, Phys. Rev. B. 56(4), (1997): 2137.

Google Scholar

[16] F. P. Dudel, M. M. Rieger, J. P. Pickering, J. L. Gole, P.A. Kohl, L. A. Bottomley, J. Electrochem. Soc. 143 (8), (1996): L164.

DOI: 10.1149/1.1837016

Google Scholar

[17] F. P. Dudel, J. L. Gole, J. Appl. Phys. 82 (1), (1997): 402.

Google Scholar

[18] Boukherroub, R., Wayner, D.D.M., Lockwood, D.J., Appl. Phys. Lett., 81(4), (2002): 601-603.

Google Scholar