[1]
T. Kim, S. Kang, Potential red phosphor for UV-white LED device, Journal of Luminescence, 122 (2007) 964-966.
DOI: 10.1016/j.jlumin.2006.01.339
Google Scholar
[2]
Z. Wang, H. Liang, M. Gong, Su. Q, Luminescence investigation of Eu3+ activated double molybdates red phosphors with scheelite structure, Journal of Alloys and Compounds, 432 (2007) 308-312.
DOI: 10.1016/j.jallcom.2006.06.008
Google Scholar
[3]
O. Silvestre, M.C. Pujol, R. Sole, et al., Ln3+: KLu (WO4)2/KLu (WO4)2 epitaxial layers: Crystal growth and physical characterization, Materials Science and Engineering, 146 (2008) 59–65.
DOI: 10.1016/j.mseb.2007.07.045
Google Scholar
[4]
Western Bolanos, Joan J. Carvajal, Maria Cinta Pujol, et al., Monoclinic double tungstate lattice matched epitaxial layers for integrated optics applications, Physics Procedia, 8 (2010) 151–156.
DOI: 10.1016/j.phpro.2010.10.026
Google Scholar
[5]
Y.E. Romanyuk, I. Utke, D. Ehrentraut, et al., Low-temperature liquid-phase epitaxy and optical waveguiding of rare-earth-ion-doped KY (WO4)2 thin layers, Journal of Crystal Growth, 269 (2004) 377–384.
DOI: 10.1016/j.jcrysgro.2004.05.049
Google Scholar
[6]
P. Urbanowic, E. Tomaszewic, T. Gron, et al., Superparamagnetic-like behavior and spin–orbit coupling in (Co, Zn)RE4W3O16 tungstates (RE=Nd, Sm, Eu, Gd, Dy and Ho), Journal of Physics and Chemistry of Solids, 72 (2011) 891–898.
DOI: 10.1016/j.jpcs.2011.04.012
Google Scholar
[7]
P.A. Loiko, K.V. Yumashev, Thermo-optic dispersion formulas for monoclinic double tungstates KRe(WO4)2, Optical Materials, 33 (2011)1688-1694.
DOI: 10.1016/j.optmat.2011.05.028
Google Scholar
[8]
Shaohua Huang, Dong Wang, Yan Wang, et al., Self-assembled three-dimensional NaY(WO4)2: Ln3+ architectures: Hydrothermal synthesis, growth mechanism and luminescence properties, Journal of Alloys and Compounds, 529 (2012) 140-147.
DOI: 10.1016/j.jallcom.2012.02.156
Google Scholar
[9]
Jinsheng Liao, Hangying You, Bao Qiu, et al., Photoluminescence properties of NaGd(WO4)2: Eu3+ nanocrystalline prepared by hydrothermal method, Current Applied Physics, 11 (2011)503-507.
DOI: 10.1016/j.cap.2010.09.002
Google Scholar
[10]
Ning Xue, Xianping Fan, Zhiyu Wang, et al., Synthesis process and the luminescence properties of rare earth doped NaLa(WO4)2 nanoparticles, Journal of Physics and Chemistry of Solids, 69 (2008) 1891-1896.
DOI: 10.1016/j.jpcs.2008.01.015
Google Scholar
[11]
D. Thangaraju, P. Samuel, S. Moorthy Babu, Growth of two-dimensional KGd(WO4)2 nanorods by modified sol–gel Pechini method, Optical Materials, 32 (2010) 321-1324.
DOI: 10.1016/j.optmat.2010.04.020
Google Scholar
[12]
Shalini Chaturvedi • Pragnesh N. Dave, Design process for nanomaterials, J Mater Sci, 48 (2013) 3605–3622.
Google Scholar
[13]
Ju Wu, Fang Duan, Yan Zheng, Yi Xie, Synthesis of Bi2WO6 nanoplate-built hierarchical nest-like structure with visible-light-induced photocatalytic activity, J. Phys. Chem. C, 111 (2007) 12866-12871.
DOI: 10.1021/jp073877u
Google Scholar
[14]
Jun Gu, Yongchun Zhu, Uniform Ln3+ (Eu3+, Tb3+) doped NaLa(WO4)2 nanocrystals: Synthesis, characterization and optical properties, Journal of Solid State Chemistry, 183 (2010) 497–503.
DOI: 10.1016/j.jssc.2009.12.019
Google Scholar
[15]
Xiaofeng Yang, Xiangting Dong, Jinxian Wang, et al., Glycine-assisted hydrothermal synthesis of YPO4: Eu3+ nanobundles, Materials Letters, 63 (2000) 629-631.
DOI: 10.1016/j.matlet.2008.12.004
Google Scholar
[16]
Eun-Kyoung Ryu, Young-Duk Huh, Morphology-controlled synthesis of SrWO4 crystals [J]. Materials Letters, 62(2008) 081-3083.
DOI: 10.1016/j.matlet.2008.01.108
Google Scholar
[17]
Xie B, Wu Y, Jiang Y, et al., Shape- controlled synthesis of BaWO4 crystals under different surfactants, Crys. Growth, 235 (2002) 283-286.
DOI: 10.1016/s0022-0248(01)01800-0
Google Scholar
[18]
Zhu Chen, Qiang Gong, Controllable synthesis of hierarchical nanostructures of CaWO4 and SrWO4 via a facile low-temperature route, Materials Research Bulletin, 44 (2009) 45-50.
DOI: 10.1016/j.materresbull.2008.04.008
Google Scholar
[19]
D. Thangaraju, A. Durairajan, Characterization of paramagnetic KHo(WO4)2 nanocrystals: Synthesized by polymeric mixed-metal precursor sol–gel method, Journal of Alloys and Compounds, 509 (2011) 9890–9896.
DOI: 10.1016/j.jallcom.2011.07.074
Google Scholar
[20]
Xuyun L, Zuwei S, Baohan Qu, Shape-controlled electrochemical synthesis of SrWO4 crystallites and their optical properties, Ceramics International, 05 (2013) 01-04.
Google Scholar
[21]
Feng Yi, Ma Tianyi, Liu Lei, Yuan Zhongyong, Insights into shape control and growth mechanism of inorganic nanocrustal, Chem. B, Sci China, 39(2009)846-886.
Google Scholar
[22]
Roman Krahne, Giovanni Morello, Albert Figuerol, et al., Physical properties of elongated inorganic nanoparticles, Physics Reports, 501 (2011) 75–221.
DOI: 10.1016/j.physrep.2011.01.001
Google Scholar
[23]
Ning Xue, Xianping Fan,et al., Synthesis process and luminescence properties of Ln3+ doped NaY(WO4)2 nanoparticles, Materials Letters, 61 (2007) 1576-1579.
DOI: 10.1016/j.matlet.2006.07.082
Google Scholar
[24]
Zhang Yuqin, TanGuoqiang, Bo Haiyang, Xia Ao, Ren Huijun, Effect of pH value on synthesis of Bi2WO6 powders by microwave hydrothermal method and photocatalytic properties, Journal of The Chinese Ceramic Society, 39 (2011) 481-485.
Google Scholar
[25]
Jun Gu, Yongchun Zhu,et al., Morphology controllable synthesis and luminescence properties of NaLa(WO4)2: Eu microcrystals, Solid State Sciences, 12 (2010)1192-1198.
DOI: 10.1016/j.solidstatesciences.2010.03.015
Google Scholar
[26]
D. Kasprowicz,A. Trzaskowska, Elastic properties of KY(WO4)2 single crystals studied by Brillouin spectroscopy, Journal of Alloys and Compounds, 492 (2010) 671-674.
DOI: 10.1016/j.jallcom.2009.12.013
Google Scholar