Density Functional Theory Study of Lithium Atom Adsorbing in the Interior and Exterior of a Series of Carbon Nanotubes

Article Preview

Abstract:

Density functional theory has been applied to study of adsorption of lithium atom in the interior and exterior of a series of carbon nanotubes. It is found that lithium atom can steadily adsorb in the interior and exterior of carbon nanotube. Lithium atom adsorbs at the center and near the sidewall for interior of carbon nanotube, but lithium atom only adsorbs near the sidewall for exterior of carbon nanotube. The interior of small diameter carbon nanotube is more favorable than larger ones for lithium atom adsorbing. This is because the lithium atom almost locates at the center of small diameter carbon nanotube, leading to strong interaction. Moreover, we also investigate the lithium atom of adsorption distance, Mulliken population and the system of the redistribution of electron density.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

150-156

Citation:

Online since:

October 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Endo, C. Kim, K. Nishimura, et al., Recent development of carbon materials for Li ion batteries, Carbon, 38 (2000) 183-197.

DOI: 10.1016/s0008-6223(99)00141-4

Google Scholar

[2] S. Flandrois, B. Simon, Carbon materials for lithium-ion rechargeable batteries, Carbon, 37 (1999) 165-180.

DOI: 10.1016/s0008-6223(98)00290-5

Google Scholar

[3] M. Wakihara, O. Yamamoto, Lithium ion batteries: fundamentals and performance, Kodansha, (1998).

Google Scholar

[4] B. A. Boukamp, G. C. Lesh, R. A. Huggins, All-solid lithium electrodes with mixed-conductor matrix, J. Electrochem. Soc., 128 (1981) 725-729.

DOI: 10.1149/1.2127495

Google Scholar

[5] J. M. Tarascon, M. Armand, Issues and challenges facing rechargeable lithium batteries, Nature, 414 (2001) 359-367.

DOI: 10.1038/35104644

Google Scholar

[6] J. E. Fischer, Storing energy in carbon nanotubes, Chem. Innov., 30 (2000) 21-27.

Google Scholar

[7] M. Winter, J. O. Besenhard, M. E. Spahr, et al., Insertion electrode materials for rechargeable lithium batteries, Adv. Mater., 10 (1998) 725-763.

DOI: 10.1002/(sici)1521-4095(199807)10:10<725::aid-adma725>3.0.co;2-z

Google Scholar

[8] G. Yang, F. P. Cai, B. Jiang, et al., Research progresses of MWCNTs modified LiFePO4 cathode material for Li-ion batteries, Journal of Functional Materials, 43(z1) (2012) 0-0.

Google Scholar

[9] Y. T. Wang, Z. D. Liu, Z. Y. Xue, et al., The rectification effect of the carbon nanotube / electrolyte interface, Journal of Functional Materials, 43(04) (2012) 473-475.

Google Scholar

[10] B. Gao, A. Kleinhammes, X. P. Tang, et al., Electrochemical intercalation of single-walled carbon nanotubes with lithium, Chem. Phys. Lett., 307 (1999) 153-157.

DOI: 10.1016/s0009-2614(99)00486-8

Google Scholar

[11] H. Shimoda, B. Gao, X. P. Tang, et al., Lithium intercalation into opened single-wall carbon nanotubes: Storage capacity and electronic properties, Phys. Rev. Lett., 88 (2002) 015502.

DOI: 10.1103/physrevlett.88.015502

Google Scholar

[12] S. W. Lee, N. Yabuuchi, B. M. Gallant, et al., High-power lithium batteries from functionalized carbon-nanotube electrodes, Nat. Nanotechnol., 5 (2010) 531-537.

DOI: 10.1038/nnano.2010.116

Google Scholar

[13] T. Kar, J. Pattanayak, S. Scheiner, Insertion of lithium ions into carbon nanotubes: An ab initio study, J. Phys. Chem. A, 105 (2001) 10397-10403.

DOI: 10.1021/jp011698l

Google Scholar

[14] C. Garau, A. Frontera, D. Quinonero, et al., Ab initio investigations of lithium diffusion in single-walled carbon nanotubes, Chem. Phys., 297 (2004) 85-91.

DOI: 10.1016/j.chemphys.2003.10.004

Google Scholar

[15] C. Garau, A. Frontera, D. Quinonero, et al., Lithium diffusion in single-walled carbon nanotubes: a theoretical study, Chem. Phys. Lett., 374 (2003) 548-555.

DOI: 10.1016/s0009-2614(03)00748-6

Google Scholar

[16] A. Udomvech, T. Kerdcharoen, T. Osotchan, First principles study of Li and Li+ adsorbed on carbon nanotube: Variation of tubule diameter and length, Chem. Phys. Lett., 406 (2005) 161-166.

DOI: 10.1016/j.cplett.2005.02.084

Google Scholar

[17] A. Udomvech, T. Kepdcharoen, Theoretical investigation of lithium-atom insertion into ultra-small diameter carbon nanotubes, J. Korean Phys. Soc., 52 (2008) 1350-1354.

DOI: 10.3938/jkps.52.1350

Google Scholar

[18] Y. W. Wen, H. J. Liu, X. J. Tan, et al., First-principles study of alkali-atom doping in a series of zigzag and armchair carbon nanotubes, J. Appl. Phys., 107 (2010) 034312.

DOI: 10.1063/1.3291128

Google Scholar

[19] J. Zhao, A. Buldum, J. Han, et al., First-principles study of Li-intercalated carbon nanotube ropes, Phys. Rev. Lett., 85 (2000) 1706-1709.

DOI: 10.1103/physrevlett.85.1706

Google Scholar

[20] V. Meunier, J. Kephart, C. Roland, et al., Ab initio investigations of lithium diffusion in carbon nanotube systems, Phys. Rev. Lett., 88 (2002) 075506.

DOI: 10.1103/physrevlett.88.075506

Google Scholar

[21] B. Song, J. W. Yang, J. J. Zhao, et al., Intercalation and diffusion of lithium ions in a carbon nanotube bundle by ab initio molecular dynamics simulations, Energy Environ. Sci., 4 (2011) 1379-1384.

DOI: 10.1039/c0ee00473a

Google Scholar

[22] J. M. Soler, E. Artacho, J. D. Gale, et al., The SIESTA method for ab initio order-N materials simulation, J. Phys: Condens. Matter, 14 (2002) 2745-2779.

DOI: 10.1088/0953-8984/14/11/302

Google Scholar

[23] D. M. Ceperley, B. J. Alder, Ground-state of the electron-gas by a stochastic method, Phys. Rev. Lett., 45 (1980) 566-569.

DOI: 10.1103/physrevlett.45.566

Google Scholar

[24] J. P. Perdew, A. Zunger, Self-interaction correction to density-functional approximations for many-electron systems, Phys. Rev. B, 23 (1981) 5048-5079.

DOI: 10.1103/physrevb.23.5048

Google Scholar

[25] N. Troullier, J. L. Martins, Efficient pseudopotentials for plane-wave calculations, Phys. Rev. B, 43 (1991) 1993-(2006).

DOI: 10.1103/physrevb.43.1993

Google Scholar

[26] L. Kleinman, D. M. Bylander, Efficacious form for model pseudopotentials, Phys. Rev. Lett., 48 (1982) 1425-1428.

DOI: 10.1103/physrevlett.48.1425

Google Scholar

[27] D. SanchezPortal, P. Ordejon, E. Artacho, et al., Density-functional method for very large systems with LCAO basis sets, Int. J. Quantum. Chem., 65 (1997) 453-461.

DOI: 10.1002/(sici)1097-461x(1997)65:5<453::aid-qua9>3.0.co;2-v

Google Scholar

[28] M. R. Hestenes, E. Stiefel, Methods of Conjugate Gradients for Solving Linear Systems, J. Res. Natl. Bur. Stand., 49 (1952) 409-436.

DOI: 10.6028/jres.049.044

Google Scholar