Effects of Precursor pH Value and Calcination Temperature on Photocatalytic Properties of Ni-Fe Codoped ZnO Nanoparticles

Article Preview

Abstract:

(Ni, Fe)-codoped ZnO powder was synthesized by a sol-gel process, using oxalic acid zinc as the zinc source. Effects of the pH value of the precursor solution and the calcination temperature on the photocatalytic degradation efficiency of (Ni, Fe)-codoped ZnO powder were studied by using methyl orange as the degradation object. The structures, morphology and ingredients were characterized by X-ray diffraction, scanning electron microscopy and X-ray photoelectron spectroscopy. The results show that all the samples are polycrystalline with a nanocrystal size of about 20~30nm. The methyl orange solution (8 mg/L) was degraded by more than 50% in 12 hours under the irradiation of natural light in the presence of the (Fe, Ni)-codoped ZnO sample synthesized under these conditions: the doping concentrations of both Ni, Fe are 1%, the pH of the precursor solution is 7.5, and the calcination temperature is 375°C. The photocatalytic degradation mechanism of (Ni, Fe)-codoped ZnO powder is discussed qualitatively, based on the microstructure analysis.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

165-172

Citation:

Online since:

October 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. H. Jiang, H. Wang, L. F. Zhu, et al. Photocatalytic activity of Ag-ZnO-TiO2 coupled semiconductor and its kinetics, J. Technology of Water Treatment, 37(2011) 30-33.

Google Scholar

[2] H. X. Li, J. Zhu. Preparation of photocatalysts with tailored structures and their correlation to the photocatalytic efficiency, J. Chin J Catal, 29 (2008) 91-98.

Google Scholar

[3] J. N. Yao. Optical catalyst research and prospect of the development, R. The development of the 2002 high technical report of Chinese Academy of Sciences. Beijing, Science Press. (2002).

Google Scholar

[4] L. Gao, S. Zheng, Q. H. Zhang. Nano titania photocatalytic materials and applications, M. Beijing, Chemical Industry Press, (2003).

Google Scholar

[5] R. Nosrati, A. Olad, R. Maramifar, Degradation of ampicillin antibiotic in aqueous solution by ZnO/polyaniline nanocomposite as photocatalyst under sunlight irradiation, J. Environ Sci Pollut Res, 19 (2012) 229-2299.

DOI: 10.1007/s11356-011-0736-5

Google Scholar

[6] A. Mclaren, T. Valdes-Solis, G. Q. Li, S. C. Tsang, shape and size effects of ZnO nanocrystals on photocatalytic activity, J.Journal of the American Chemical Society, 131 (2009) 12540-12541.

DOI: 10.1021/ja9052703

Google Scholar

[7] K. E. Karakitson, X. E. Verkios. Effects of altervalent cation doping of titania on its performance as a photocatalyst for water cleavage, J. Phys Chem, 97 (1993) 1184-1189.

DOI: 10.1021/j100108a014

Google Scholar

[8] W. Choi, A. Termin, M. R. Hoffmann. The role of metal ion dopants in quantum-sized TiO2: correlation between photoreactivity and charge carrier recombination dynamics, J. Phys Chem, 51, 98 (1994) 13669-13679.

DOI: 10.1021/j100102a038

Google Scholar

[9] R. Asahi, T. Morikawa, T. Ohwaki, et al. Visible-light photocatalysis in nitrogen-doped titanium oxides, J. Science, 5528, 293 (2001) 269-271.

DOI: 10.1126/science.1061051

Google Scholar

[10] S. T. Han, H. L. Xi , R. X. Shi, et al. Prospect and progress in the semiconductor photocatalysis , J. Chinese Journal of Chemical Physics. 5, 16 (2003) 339-349.

Google Scholar

[11] I. L. Marta. Heterogeneous photocatalysis transition metal ions in photocatalytis systems, J. Appl Catal B, 2~3, 23 (1999) 89-114.

Google Scholar

[12] Y. Bessekhouad, D. Robert, J.V. Weber. Bi2S3/TiO2 and CdS/TiO2 heterojunctions as an available configuration for photocatalytic degradation of organic pollutant, J. Photochem Photobiol A: Chem. 163 (2004) 569-580.

DOI: 10.1016/j.jphotochem.2004.02.006

Google Scholar

[13] D. C. Cronemeyer. Infrared Absorption of Reduced Rutile TiO2 Single Crystals, J. Phys Rev, 50, 113 (1959) 1222-1226.

Google Scholar

[14] A. Hernández, L. Maya, E. Sánchez-Mora, E. M. Sánchez. Sol-gel synthesis, characterization and photocatalytic activity of mixed oxide ZnO-Fe2O3, J. Sol-Gel Sci Technol, 42 (2007) 71-78.

DOI: 10.1007/s10971-006-1521-7

Google Scholar

[15] S. F. Chen, W. Zhao, W. Liu, S. J. Zhang. Preparation, characterization and activity valuation of p-n junction photocatalyst p-ZnO/n-TiO2, J. Applied Surface Science. 255, 5 (2008) 2478-2484.

DOI: 10.1016/j.apsusc.2008.07.115

Google Scholar

[16] Z. G. Hu, M. Y. Duan, M. Xu. Electronic structure and optical properties of ZnO doped with Fe and Ni, J. Acta Phys. Sin. 58, 2 (2009) 1166-1172.

Google Scholar

[17] Z. G. Hu, X. Zhou, M. Xu. Preparation and properties of ZnO thin films doped with Fe and Ni by sol-gel method, J. Journal of Synthetic Crystals. 39(2010) 257-261.

Google Scholar

[18] Z. H. Wu, M. Xu, W. Q. Duan. Effects of Fe doping on the crystal structures and photoluminescences of ZnO: Ni thin films prepared by sol-gel method, J. Acta Phys. Sin. 61(2011) 1175.

DOI: 10.7498/aps.61.137502

Google Scholar

[19] T. H. Fu, Q. Q. Gao, P. Liu, et al. Preparation of (Fe, Ni)-codoped ZnO and its photocatalytic activity for degradation of methyl orange, J. Chinese Journal of Catalysis. 31 (2010)797.

DOI: 10.3724/sp.j.1088.2010.91220

Google Scholar

[20] J. K. Jia, L. Luo, W. Zhang, et al. Room temperature ultraviolet stimulated emission of ZnO nanocrystals, J. Spectroscopy and Spectral Analysis[J]. 2010, 30(9), 2525.

Google Scholar

[21] K. C. Barick, Sarika Singh, M. Aslam, D. Bahadur. Porosity and photocatalytic studies of transition metal doped ZnO nanoclusters, J. Microporous and Mesoporous Materials. 134 (2010) 195-202.

DOI: 10.1016/j.micromeso.2010.05.026

Google Scholar

[22] A. Azam, F. Ahmed, N. Arshi, M. Chaman, A.H. Naqvi. Formation and characterization of ZnO nanopowder synthesized by sol-gel Method, J. Journal of Alloys and Compounds. 496 (2010) 399-402.

DOI: 10.1016/j.jallcom.2010.02.028

Google Scholar

[23] X. Y. Deng, M. F. Lv, Z. L. Cui. Characterization of nanosized ZnO by thermal analysis, J. Journal of Qingdao University of Science and Technology. 27 (2006) 228.

Google Scholar

[24] W. C. Li, G. T. Du, X. T. Yang, et al. XPS valence band of ZnO films, J. Hemial Journal of Hinese Universities. 25(11) (2004) P2078.

Google Scholar

[25] G. D. Khattak, M. A. Salim. X-ray photoelectron spectroscopic studies of zinc-tellurite glasses, J. Journal of Electron Spectroscopy and Related Phenomena. 123 (2002) 47-55.

DOI: 10.1016/s0368-2048(01)00371-1

Google Scholar

[26] S. Linic, P. Christopher, D. B. Ingram. Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy, J. Nature Materials, 10 (2011) 911-921.

DOI: 10.1038/nmat3151

Google Scholar

[27] R. Wahab, S. G. Ansari, Y. S. Kima, G. Khang, H. S. Shin. Effect of hydroxylamine hydrochloride on the floral decoration of zinc oxide synthesized by solution method, J. Applied Surface Science, 254 (2008) 2037-(2042).

DOI: 10.1016/j.apsusc.2007.08.038

Google Scholar

[28] S. Kant, D. Pathania, P. Singh, P. Dhiman, A. Kumar. Removal of malachite green and methylene blue by Fe0. 01Ni0. 01Zn0. 98O/polyacrylamide nanocompositeusing coupled adsorption and photocatalysis[J]. Applied Catalysis B: Environmental. 2014, 147: 340-352.

DOI: 10.1016/j.apcatb.2013.09.001

Google Scholar