Mechanism towards Fluorescence of CdTe Quantum Dots Quenched by Magnetic Iron Oxide Nanoparticles

Article Preview

Abstract:

In this study, fluorescence spectrum and UV-vis absorption spectrum were employed to explore the interactions between magnetic iron oxide nanoparticles modified by citric acid (CA-MION) and CdTe quantum dots modified by thioglycolic acid (TGA-CdTe QDs). Significantly, the mechanism was demonstrated as a dynamic quenching process based on energy transfer. Taken together, these results showed the decreased fluorescence intensity of CdTe QDs implied satisfactory linear relationship with various concentrations of CA-MION ranged from 0.15×10-3 mol·L-1 to 4.5×10-3 mol·L-1. Overall, this study has provided the potential for preparing multimagnetic-fluorescent nanocomposites and further developing quantitative detections of multi-analytes.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

185-190

Citation:

Online since:

October 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] X. Hong, J. Li, M. J. Wang, et al. Chem. Mater., 16 (2004) 4022-4027.

Google Scholar

[2] D. S. Wang, J. B. He, N. Rosenzweig, et al. Nano Lett., 4 (2004) 409-413.

Google Scholar

[3] J. Kim, J. E. Lee, J. Lee, et al. J. Am. Chem. Soc., 128(2005) 688-689.

Google Scholar

[4] T. R. Sathe, A. Agrawal, S. M. Nie. Anal. Chem., 78 (2006) 5627-5632.

Google Scholar

[5] S. T. Selvan, P. K. Patra, C. Y. Ang, et al. Angew. Chem. Int. Ed. Engl., 119(2007) 2500-2504.

Google Scholar

[6] S. T. Selvan, T. T. Tan, D. K. Yi, et al. Langmuir, 26 (2010) 11631-11641.

Google Scholar

[7] P. Sun, H. Zhang, C. Liu, et al. Langmuir, 26 (2010) 1278-1284.

Google Scholar

[8] E. Q. Song, G. P. Wang, H. Y. Xie, et al. Clin. Chem., 53 (2007) 2177-2185.

Google Scholar

[9] R. Di Corato, N. C. Bigall, A. Ragusa, et al. ACS Nano, 5 (2011) 1109-1121.

Google Scholar

[10] Y. S. Kim, B. C. Kim, J. H. Lee, et al. Biotechnology and Bioprocess Engineering, 11 (2006) 449-454.

Google Scholar

[11] G. Wang, X. Su. Anal. Bioanal. Chem., 397 (2010) 1251-1258.

Google Scholar

[12] M. Xie, J. Hu, C. Y. Wen, et al. Nanotechnology, 23 (2012) 035602.

Google Scholar

[13] J. Hu, M. Xie, C. Y. Wen, et al. Biomaterials, 32 (2011) 1177-1184.

Google Scholar

[14] P. Zrazhevskiy, M. Sena, X. Gao. Chem. Soc. Rev., 39 (2010) 4326-4354.

Google Scholar

[15] F. A. Esteve-Turrillas, A. Abad-Fuentes. Biosens. Bioelectron., 41 (2013) 12-29.

Google Scholar

[16] J. Gao, H. Gu, B. Xu. Acc. Chem. Res., 42 (2009) 1097-1107.

Google Scholar

[17] M. Colombo, S. Carregal-Romero, M. F. Casula, et al. Chem. Soc. Rev., 41 (2012) 4306-4334.

Google Scholar

[18] C. H. Wang, S. T. Kang, C. K. Yeh. Biomaterials, 34 (2013) 1852-1861.

Google Scholar

[19] X. Liu, C. Z. Zheng, Y. X. Yang, et al. Acta Chimica Sinica, 68 (2010) 793-797.

Google Scholar

[20] M. Y. Gao, S. Kirstein, H. Mohwald, et al. J. Phys. Chem. B., 102 (1998) 8360-8363.

Google Scholar

[21] W. W. Yu, L. H. Qu, W. Z. Guo, et al. Chem. Mater., 15 (2003) 2854-2860.

Google Scholar

[22] C. Hui, C. M. Shen, T. Z. Yang, et al. J. Phys. Chem. C., 112 (2008) 11336-11339.

Google Scholar