[1]
Lakshmi S, Lu L, Gupta M. In situ preparation of TiB2 reinforced Al based composites[J]. Journal of Materials Processing Technology, 1998, 73: 160-166.
DOI: 10.1016/s0924-0136(97)00225-2
Google Scholar
[2]
Tjong S C, Ma Z Y. Microstructural and mechanical characteristics of in situ metal matrix composites[J]. Materials Science and Engineering, 2000(29): 49-113.
DOI: 10.1016/s0927-796x(00)00024-3
Google Scholar
[3]
WANG Ying, ZHANG Hai-wen. The Application of Metal-Base Composites in Automobile Industry. Guiyang Jinzhu University Journal, 2004, 2: 120-122.
Google Scholar
[4]
Le Yong-kang, CHEN Dong, ZHANG Yi-jie, MA Nai-heng, WANG Hao-wei. Mechanical Properties and Fracture Morphology of Insitu TiB2 Particle Reinforced Aluminum Matrix Composites[J]. Special Casting & Nonferrous Alloys, 2006. 26(8): 518-520.
Google Scholar
[5]
Tjong S C, Wang G S, Geng L, Mai Y W. Cyclic deformation behavior of in situ aluminum-matrix composites of the system Al-Al3Ti-TiB2-Al2O3[J]. Composites Science And Technology, 2004(64): 1971-(1980).
DOI: 10.1016/j.compscitech.2004.02.006
Google Scholar
[6]
HAN Yan-feng, LIU Xiang-fa, BIAN Xiu-fang. In situ TiB2 particulate reinforced near eutectic Al-Si alloy composites[J]. Composites Part A: Applied Science & Manufacturing, 2002. 33(3): 439-444.
DOI: 10.1016/s1359-835x(01)00124-5
Google Scholar
[7]
Tsunekawa Y, Suzuki H, Genma Y. Applicaion of ultrasonic vibration to in situ MMC process by electromagnetic melt stirring[J]. Materials & Design, 2001(22): 467-472.
DOI: 10.1016/s0261-3069(00)00079-0
Google Scholar
[8]
YAN Meng, SONG Chang-jiang, ZHAI Qi-jie. Pulse Magnetic Field Refinement of Solidification Structure of Metals[J]. Modern Cast Iron, 2008(06): 32-36.
Google Scholar
[9]
LIU Li-qiang, LI Qiu-shu, LI-Ren-xing, HOU Xu, ZHAI Qi-jie. Effect of Pulsed Magnetic Field on Solidification Structures of Pure Aluminum[J]. China Foundry Machinery & Technology, 2004(01): 27-28.
Google Scholar
[10]
NIE K B, WANG X J, HU X S, XU L, WU K, ZHENG M Y. Microstructure and mechanical properties of SiC nanoparticles reinforced magnesium matrix composites fabricated by ultrasonic vibration[J]. Materials Science & Engineering: A, 2011. 528(15): 5278-5282.
DOI: 10.1016/j.msea.2011.03.061
Google Scholar
[11]
GAO Shou-lei, ZHAI Qi-jie, QI Fei-peng, Fu Zhi-yu, GONG Yong-yong. Application and Development of Hihg-Intensity Ultrasonic in Solidification Process of Metals[J]. Materials Review, 2002(09): 5-6.
Google Scholar
[12]
MA Li-qun, SHU Guang-yi, CHEN Feng. Research on Solidification of Metal Melt under Ultrasonic Field. Materials Science & Engineering, 1995(04): 2-7.
Google Scholar
[13]
TAN Wei-ming, LU Chun-hua, MA Li-qun, SHEN Xiao-dong, XU Zhong-zi. Research Progress and Prospect of Metal Matrix Composites Fabricated by High Intensity Ultrasonic[J]. Materials Review, 2006, 20: 258-260.
Google Scholar
[14]
WANG Jun, CHEN Feng, SUN Bao-de. Effects of High Intensity Ultrasonic during MMCp Fabrication[J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY, 1999, 33(7): 813-816.
Google Scholar
[15]
LIU Zhi-wei, HAN Qing-you, LI Jian-guo. Ultrasound assisted in situ technique for the syntheses of particulate reinforced aluminum matrix composites[J]. Composites: Part B, 2011, 42: 2080-(2084).
DOI: 10.1016/j.compositesb.2011.04.004
Google Scholar
[16]
HU Hua-wen. Ultrasonic melt treatment and solidification of 7055 aluminum alloy[D]. Changsha: Central South University, 2004: 1-57.
Google Scholar