Review of Friction and Wear Resistance Properties of Modified PEEK Composites

Article Preview

Abstract:

The characteristics, structure and applications of polyetheretherketone (PEEK) composites are introduced briefly. The research progress of friction and wear resistance properties of PEEK composites, modified by carbon fiber, other nanometer and micro-particles, are summarized. Suggestions for further research are put forward.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

290-296

Citation:

Online since:

October 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Cui Xiaoming. Development and application of special engineering plastics polyetheretherketone. Engineering Plastics Application, 2004, 32(10): 63-66.

Google Scholar

[2] Jaime Martin and Marisol Martin-Gonzalez. The use of PEEK nanorod arrays for the fabrication of nanoporous surfaces under high temperature: SiNx example. Nanoscale, 2012, 4: 5608-5613.

DOI: 10.1039/c2nr30885a

Google Scholar

[3] Zhao wei, Wang Dean, Laingchong, et al. Research and application of PEEK and PEEK composites. Materials Review, 2003, 17(9): 68-71.

Google Scholar

[4] R. K. Goyal, A. N. Tiwari, U. P. Mulik1, Y. S. Negi. Thermal expansion behavior of high performance PEEK matrix composites. J. Phys. D: Appl. Phys, 41 (2008) 085403 (7pp).

DOI: 10.1088/0022-3727/41/8/085403

Google Scholar

[5] I. P. P. Cansado, F. A. M. M. Gonçalves, J. M. V. Nabais, M. M. L. Ribeiro Carrott, P. J. M. Carrott. PEEK: An excellent precursor for activated carbon production for high temperature application. Fuel Processing Technology, 2009, 90: 232-236.

DOI: 10.1016/j.fuproc.2008.09.001

Google Scholar

[6] V.S. Nisa, S. Rajesh, K. P. Murali, V. Priyadarsini, S. N. Potty, R. Ratheesh. Preparation, characterization and dielectric properties of temperature stable SrTiO3/PEEK composites for microwave substrate applications. Composites Science and Technology, 2008, 68: 106-112.

DOI: 10.1016/j.compscitech.2007.05.024

Google Scholar

[7] K. Fujihara, Zheng-Ming Huanga, S. Ramakrishna, K Satknanantham, H. Hamada. Performance study of braided carbon/PEEK compression bone plates. Biomaterials, 2003, 24: 2661-2667.

DOI: 10.1016/s0142-9612(03)00065-6

Google Scholar

[8] Hiroshi Nakamura, Takashi Nakamura, Toru Noguchi, Kichiro Imagawa. Photodegradation of PEEK sheets under tensile stress. Polymer Degradation and Stability, 2006, 91: 740-746.

DOI: 10.1016/j.polymdegradstab.2005.06.003

Google Scholar

[9] Rapee Gosalawita, Suwabun Chirachanchai, Angelo Basile, Adolfo Iulianelli. PEEK-WC membranes and Krytox-Si-Nafion® composite Membranes. Desalination, 2009, 235: 293-305.

DOI: 10.1016/j.desal.2008.01.017

Google Scholar

[10] Krishal Patel, Colin S. Doyle, Bryony J. James, Margaret M. Hyland. Valence band XPS and FT-IR evaluation of thermal degradation of HVAF thermally sprayed PEEK coatings. Polymer Degradation and Stability, 2010, 95: 792-797.

DOI: 10.1016/j.polymdegradstab.2010.02.001

Google Scholar

[11] Krishal Patel, Colin S. Doyle, Daisuke Yonekura, Bryony J. James. Effect of surface roughness parameters on thermally sprayed PEEK coatings. Surface & Coatings Technology, 2010, 204: 3567-3572.

DOI: 10.1016/j.surfcoat.2010.04.026

Google Scholar

[12] G. Zhang, W. Y. Lia, M. Cherigui, C. Zhang, H. Liao, J. M. Bordes, C. Coddet. Structures and tribological performances of PEEK (poly-ether-ether-ketone)-based coatings designed for tribological application. Progress in Organic Coatings, 2007, 60: 39-44.

DOI: 10.1016/j.porgcoat.2007.06.004

Google Scholar

[13] Lin Ye, Llaus Friedrich, Jachim Kästel, Yiu-Wing Mai. Consolidation of unidirectional CF/PEEK composites from coming led yarn prepreg. Composite Science and Technology, 1995, 54: 3409-353.

DOI: 10.1016/0266-3538(95)00061-5

Google Scholar

[14] Patrick R. Schmidlin, Bogna Stawarczyk, Marco Wieland, Thomas Attina, Christoph H. F. Hämerleb, Jens Fischerb. Effect of different surface pre-treatments and luting materials on shear bond strength to PEEK. Dental Materials, 2010, 26: 553-559.

DOI: 10.1016/j.dental.2010.02.003

Google Scholar

[15] AMD´ıez-Pascual, MNaffakh, AG´omez, CMarco, G Ellis. The influence of a compatibilizer on the thermal and dynamic mechanical properties of PEEK/carbon nanotube composites. Nanotechnology, 2009, 20: 315707-315720.

DOI: 10.1088/0957-4484/20/31/315707

Google Scholar

[16] Quo Qiang, Tian Aiguo. Study on the property and engineering application of the engineering plastic PEEK with high performance. Engineering Plastics Application, 2001, 29(12): 19-22.

Google Scholar

[17] Fu Guotai, Liu Hongjun, Zhang Bai, et al. Characteristics and applications of PEEK. Engineering Plastics Application, 2006, 34(10): 69-71.

Google Scholar

[18] C. D. Aniello, G. Romano, R. Russo, V. Vittoria. Influence of time and temperature on deformed films of poly ether-ether-ketone (PEEK). European Polymer Journal, 2000, 36: 1571-1577.

DOI: 10.1016/s0014-3057(99)00235-9

Google Scholar

[19] Joe. E. Ramey, Jr., B. S. Comparison of notch strength between GR/PEEK (APC-1 and APC-2) and GR /Epoxy composite material at elevated temperature. ADA164033.

Google Scholar

[20] Li Xiaohong. Review of application and research of a new high-temperature resistance material PEEK. Optical Fiber and Cabal Transmission Technology, 2010, 4: 44-46.

Google Scholar

[21] G. Zhang, H. Yub, C. Zhang, H. Liao, C. Coddet. Temperature dependence of the tribological mechanisms of amorphous PEEK (polyetheretherketone) under dry sliding conditions. Acta Materialia, 2008, 56: 2182-2190.

DOI: 10.1016/j.actamat.2008.01.018

Google Scholar

[22] Wang Ximei, Qi Guiliang, Cai Jiangtao, et al. Research progress of PEEK modification. Engineering Plastics Application, 2009, 37(2): 80-83.

Google Scholar

[23] Ilaria Corni, Maria Cannio, Marcello Romagnoli, Aldo R. Boccaccini. Application of a neural network approach to the electrophoretic deposition of PEEK-alumina composite coatings. Materials Research Bulletin, 2009, 44: 1494-1501.

DOI: 10.1016/j.materresbull.2009.02.011

Google Scholar

[24] Mohit Sharma, Jayashree Bijwe, Kuldeep Singh, Peter Mitschang. Exploring potential of Micro-Raman spectroscopy for correlating graphitic distortion in carbon fibers with stresses in erosive wear studies of PEEK composites. Wear , 2011, 270: 791-799.

DOI: 10.1016/j.wear.2011.02.002

Google Scholar

[25] David L. Burris, W. Gregory Sawyer. Tribological behavior of PEEK components with compositionally graded PEEK/PTFE surfaces. Wear, 2007, 262: 220-224.

DOI: 10.1016/j.wear.2006.03.045

Google Scholar

[26] K. Fujihara, Zheng-Ming Huangb, S. Ramakrishna, K. Satknananthame, H. Hamadaf. Feasibility of knitted carbon/PEEKcomposites for orthopedic bone plates. Biomaterials, 2004, 25: 3877-3885.

DOI: 10.1016/j.biomaterials.2003.10.050

Google Scholar

[27] Shang-lin Gao, Jang-kyo Kim. Correlation among crystalline morphology of PEEK, interface bond strength and in-plane mechanical properties of carbon/PEEK composites. Journal of Applied Polymer Science, 2002, 84: 1155-1167.

DOI: 10.1002/app.10406

Google Scholar

[28] Xianqiang Pei, KlausFriedrich. Erosive wear properties of unidirectional carbon fiber reinforced PEEK composites. Tribology International, 2012, 55: 135-140.

DOI: 10.1016/j.triboint.2012.05.020

Google Scholar

[29] Beibei Chen, Jianzhang Wang, Fengyuan Yan. Comparative investigation on the tribological behaviors of CF/PEEK composites under sea water lubrication. Tribology International, 2012, 52: 170-177.

DOI: 10.1016/j.triboint.2012.03.017

Google Scholar

[30] J. Hanchi, N. S. Eiss, Jr. Dry sliding friction and wear of short carbon-fiber-reinforced polyetheretherketone (PEEK) at elevated temperature. Wear, 1997, 203-204: 380-385.

DOI: 10.1016/s0043-1648(96)07347-4

Google Scholar

[31] Hua Fu, Bo Liao, Fang-juan Qi, Bao-chen Sun, Ai-ping Liu, De-liang Ren. The application of PEEK in stainless steel fiber and carbon fiber reinforced composites. Composites: Part B, 2008, 39: 585-591.

DOI: 10.1016/j.compositesb.2007.09.003

Google Scholar

[32] Shang-lin Gao, Jang-kyo Kim. Correlation among crystalline morphology of PEEK, interface bond strength, and in-plane mechanical properties of carbon/PEEK composites, Journal of Applied Polymer Science, 2002, 84: 1155-1167.

DOI: 10.1002/app.10406

Google Scholar

[33] J. Li. Interfacial studies on the ozone and air-oxidation-modified carbon fiber reinforced PEEK composites. Surf. Interface Anal, 2009, 41, 310-315.

DOI: 10.1002/sia.3023

Google Scholar

[34] A. Molazemhosseini, H. Tourani, A. Khavandi, B. Eftekhari Yekta. Tribological performance of PEEK based hybrid composites reinforced with short carbon fibers andnano-silica. Wear, 2013, 303: 397-404.

DOI: 10.1016/j.wear.2013.03.019

Google Scholar

[35] G. Zhang, Z. Rasheva, A. K. Schlarb. Friction and wear variations of short carbon fiber (SCF)/PTFE/graphite (10 vol. %) filled PEEK: Effects of fiber orientation and nominal contact pressure. Wear, 2010, 268: 893-899.

DOI: 10.1016/j.wear.2009.12.001

Google Scholar

[36] Yanchun Han, Stefan Schmitt, Klaus Friedrich. Nanoscale indentation and scratch of short carbon fiber reinforced PEEK/PTFE composite blend by atomic force microscope lithography. Applied Composite Materials, 1999, 6: 1-18.

Google Scholar

[37] Z.P. Lu, K. Friedrich. On sliding friction and wear of PEEK and its composites. Wear, 1995, 181-182: 624-637.

DOI: 10.1016/0043-1648(95)90178-7

Google Scholar

[38] G. Zhang, H. Liao, H. Lia, C. Mateus, J. M. Bordes, C. Coddet. On dry sliding friction and wear behavior of PEEK and PEEK/SiC-composite coatings. Wear, 2006, 260: 594-600.

DOI: 10.1016/j.wear.2005.03.017

Google Scholar

[39] QiHua Wang, JinfenXu , WeichangShen, Qunji Xue. The effect of nanometer SiC filler on the tribological behavior of PEEK. Wear, 1997, 209: 316-321.

DOI: 10.1016/s0043-1648(97)00015-x

Google Scholar

[40] Qihua Wang, Jinfen Xu, Weichang Shen, Weimin Liu. An investigation of the friction and wear properties of nanometer Si3N4 filled PEEK. Wear, 1996, 196: 82-86.

DOI: 10.1016/0043-1648(95)06866-x

Google Scholar

[41] Qihua Wang, Qunji Xue, Huiwen Liu, Weichang Shen, Jinfen Xu. The effect of particle size of nanometer ZrO2 on the tribological behavior of PEEK. Wear, 1996, 198: 216-219.

DOI: 10.1016/0043-1648(96)07201-8

Google Scholar

[42] Qihua Wang, Qunji Xue, Huiwen Liu, Jianmin Chen. Effect of nanometer SiC filler on the tribological behavior of PEEK under distilled water lubrication. Journal of Applied Polymer Science. 2000, 78: 609-614.

DOI: 10.1002/1097-4628(20001017)78:3<609::aid-app160>3.0.co;2-d

Google Scholar

[43] Guoliang Pan, Qiang Guo,Weidong Zhang, Aiguo Tian. Fretting wear behaviors of nanometer Al2O3 and SiO2 reinforced PEEK composites. Wear, 2009, 266: 1208-1215.

DOI: 10.1016/j.wear.2009.03.039

Google Scholar

[44] N. L. McCook, M. A. Hamilton, D. L. Burris, W. G. Sawyer. Tribological results of PEEK nanocomposites in dry sliding against 440℃ in various gas environments. Wear, 2007, 262: 1511-1515.

DOI: 10.1016/j.wear.2007.01.036

Google Scholar

[45] Fengxin. Preparation method of wear resistance PEEK composite reinforced by titanium-based whisker. CN1966577[P]. (2007).

Google Scholar

[46] G.Y. Xie, G.S. Zhuang, G.X. Sui, R. Yang. Tribological behavior of PEEK/PTFE composites reinforced with potassium titanate whiskers. Wear, 2010, 268: 424-430.

DOI: 10.1016/j.wear.2009.08.032

Google Scholar