Thermal Stability and Electrical Conductivity of Graphite Nanosheets/Polyaniline Composites

Article Preview

Abstract:

Composites of graphite nanosheets (GNS) fillers in a polyaniline (PANI) matrix doped with dodecylbenzene sulfonic acid were synthesized by polymerization with the aid of sonication. The resulting GNS/PANI composites were characterized by scanning and trans-mission electron microscopy, Fourier transform infrared spectroscopy, X-ray photo-electron spectroscopy, thermogravimetry and electrical conductivity. The results showed that the GNS play an important role in the improvement of thermal stability and electrical conductivity of the composites. Especially, followed the change of GNS contents of the composites, the results of the thermal stability analysis and electrical conductivity analysis got the same variation trend. When the GNS contents for PANI reached 5 wt% in the composites, the best thermal stability and the maximum value of electrical conductivity (6.48 S·cm-1) were obtained.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

283-289

Citation:

Online since:

October 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] B. Sambhu, K. Dipak, K. S. Nikhil, H. L. Joong, Progress in preparation, processing and applications of polyaniline, Prog Polym Sci. 34 (2009) 783-810.

Google Scholar

[2] Y. G Wang, H. Q. Li, Y. Y Xia, Ordered whisker like polyaniline grown on the surface of mesoporous carbon and its electrochemical capacitance performance, Adv Mater. 18(19) (2006) 2619-2623.

DOI: 10.1002/adma.200600445

Google Scholar

[3] X. Chen, L. C. Li, S. Y. Jin, B. Q. Zhang, H. S. Qian, G. X. Tong, Expanded graphite/polyaniline electrical conducting composites: Synthesis, conductive and dielectric properties, Mater Lett. 64 (2010) 1313-1315.

DOI: 10.1016/j.matlet.2010.03.018

Google Scholar

[4] R. Sengupta, M. Bhattacharya, S. Bandyopadhyay, A. K. Bhowmick, A review on the mechanical and electrical properties of graphite and modified graphite reinforced polymer composites, Prog Polym Sci. 36 (2011) 638-670.

DOI: 10.1016/j.progpolymsci.2010.11.003

Google Scholar

[5] J. R. Potts, D. R. Dreyer, C. W. Bielawski, R. S. Ruoff, Graphene-based polymer nanocomposites, Polymer. 52 (2011) 5-25.

DOI: 10.1016/j.polymer.2010.11.042

Google Scholar

[6] L. Gong, I. A. Kinloch, R. J. Young, I. Riaz, R. Jalil, K. S. Novoselov, Interfacial stress transfer in a graphene monolayer nanocomposite, Adv Mater. 22 (2010) 2694-2697.

DOI: 10.1002/adma.200904264

Google Scholar

[7] J. Yan, T. Wei, Z. J. Fan, W. Z. Qian, M. L. Zhang, X. D. Shen, et al., Preparation of graphene nanosheet/carbon nanotube/polyaniline composite as electrode material for supercapacitors, J Power Sources. 195 (2010) 3041-3045.

DOI: 10.1016/j.jpowsour.2009.11.028

Google Scholar

[8] J. Yan, T. Wei, B. Shao, Z. J. Fan, W. Z. Qian, M. L. Zhang, et al., Preparation of a graphene nanosheet/polyaniline composite with high specific capacitance, Carbon. 48 (2010) 487-493.

DOI: 10.1016/j.carbon.2009.09.066

Google Scholar

[9] X. J. Lu, H. Dou, S. D. Yang, L. Hao, L. J. Zhang, L. F. Shen, et al., Fabrication and electrochemical capacitance of hierarchical graphene/polyaniline/carbon nanotube ternary composite film, Electrochim Acta. 56 (2011) 9224-9232.

DOI: 10.1016/j.electacta.2011.07.142

Google Scholar

[10] Y. X. Ma, Y. F. Li, G. H. Zhao, L. Q. Yang , J. Z. Wang, X. Shan, et al., Preparation and characterization of graphite nanosheets decorated with Fe3O4 nanoparticles used in the immobilization of glucoamylase, Carbon. 50(8) (2012) 2976-2986.

DOI: 10.1016/j.carbon.2012.02.080

Google Scholar

[11] M. G. Han, S. K. Cho, S. G. Oh, S. S. Im, Preparation and characterization of polyaniline nanoparticles synthesized from DBSA micellar solution, Synthetic Met. 126 (2002) 53-60.

DOI: 10.1016/s0379-6779(01)00494-5

Google Scholar

[12] N. T. Tung, T. V. Khai, H. Lee, D. Sohn, The effects of dopant on morphology formation in polyaniline graphite nanoplatelet composite, Synthetic Met. 161 (2011) 177-182.

DOI: 10.1016/j.synthmet.2010.11.018

Google Scholar