Influence of Extending Ratio on Mechanical and Piezoelectric Properties of Irradiation Cross-Linked Polypropylene Films

Article Preview

Abstract:

Stretchable piezoelectret films may be applied in sensor skins, wearable equipment, micro-energy harvesters and so on. Irradiation cross-linked polypropylene (IXPP) foam sheets could be stretchable piezoelectrets after proper modification of microstructure and polarization. In this article, commercial IXPP foam sheets were modified by a process consisting of hot-pressing and extending and rendered piezoelectric by corona charging, and the influence of extending ratio on the stretchability and piezoelectric properties were investigated. The quasi-static piezoelectric d33 coefficients up to 427 pC/N are achieved, which well retained to the strain up to 11%. The result shows that in the surface parallel plane, the Young’s module in extending and transverse direction show typical anisotropism, which retains as the secondary extending ratio increases from 0% to 110%, while in the surface normal direction, the Young’s module of the film decreases from 0.87 to 0.34 MPa. The stretchability of the modified film is significantly improved compared to which of the origin film.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

407-413

Citation:

Online since:

October 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. Lekklala, P. Poramo, K. Nyholm, T. Kaikonen, EMF force sensor-a flexible and sensitive electret film for physiological application, Med. Bio. Eng. Comp. 34 (1996) 67-69.

Google Scholar

[2] R. Gerhard-Multhaupt, Less can be more: holes in polymers lead to a new paradigm of piezoelectric materials for electret transducers, IEEE Trans. Dielectr. Insul. 9 (2002) 850-859.

DOI: 10.1109/tdei.2002.1038668

Google Scholar

[3] S. Bauer, R. Gerhard-Multhaupt, G.M. Sessler, Ferroelectrets: soft electro-active foams for transducers, Phys. Today 57 (2) (2004) 37-43.

DOI: 10.1063/1.1688068

Google Scholar

[4] S. Bauer, Piezo-, pyro- and ferroelectrets: soft transducer materials for electromechanical energy conversion, IEEE Trans. Dielectr. Insul. 5 (2006) 953-962.

DOI: 10.1109/tdei.2006.247819

Google Scholar

[5] J. A. Rogers, T. Someya, Y. Huang, Materials and mechanics for stretchable electronics, Science, 327 (2010), 1603-1607.

DOI: 10.1126/science.1182383

Google Scholar

[6] T. Sekitani, T. Someya, Stretchable, Large-area Organic Electronics, Adv. Mater. 22 (20) (2010), 2228-2246.

DOI: 10.1002/adma.200904054

Google Scholar

[7] V. J. Lumelsky, M. S. Shur, S. Wagner, Sensitive skin, IEEE Sens. J. 41 (1) (2001), 1530-437X.

DOI: 10.1109/jsen.2001.923586

Google Scholar

[8] X. Feng, Y. Hung, J. A. Rogers, Stretchable ferroelectric nano-ribbons with wavy configuration on elastomeric substrates, ACS Nano, 5 (2011), 3326-3332.

DOI: 10.1021/nn200477q

Google Scholar

[9] Zhang. X, Pan. D, Wang. X, Cao. G, Sun. Z, Xia. Z, Piezoelectric coefficients of cross-linked polypropylene films stretched at elevated temperatures, Journal of Electrostatics 69 (6) (2011) 554-558.

DOI: 10.1016/j.elstat.2011.07.008

Google Scholar

[10] X. Zhang, J. Huang, J. Chen, Z. Wan, S. Wang, and Z. Xia, Piezoelectric properties of irradiation-crosslinked polypropylene ferroelectrets, Appl. Phys. Lett. 91 (2007), 182901.

DOI: 10.1063/1.2803316

Google Scholar

[11] X. Zhang, X. Wang, J. Huang, and Z. Xia, Quasi-static and dynamic piezoelectric d33 coefficients of irradiation cross-linked polypropylene ferroelectrets, J. Materials Sci., 44 (2009) 2459-2465.

DOI: 10.1007/s10853-009-3312-3

Google Scholar

[12] Xiaoqing Zhang, Xinwu Zhang, Qiong You, Gerhard M. Sessler, Low cost, large area, stretchable piezoelectric films based on irradiation cross-linked polypropylene, Macromol. Mater. Eng. 299 (2014) 290–295.

DOI: 10.1002/mame.201300161

Google Scholar

[13] G.S. Neugschwandtner, R. Schwödiauer, M. Vieytes, S. Bauer-Gogonea, S. Bauer, J. Hillenbrand, R. Kressmann, G.M. Sessler, M. Paajanen, J. Lekkala, Large and broadband piezoelectricity in smart polymer-foam space-charge electrets, Appl. Phys. Lett. 77 (2000).

DOI: 10.1063/1.1331348

Google Scholar

[14] A. Mellinger, Dielectric resonance spectroscopy: a versatile tool in the quest for better piezoelectric polymers, IEEE Trans. Dielectr. Electr. Insul 10 (2003) 842-861.

DOI: 10.1109/tdei.2003.1237333

Google Scholar

[15] IEEE standard on piezoelectricity, ANSI/IEEE Std. 176, (1987).

Google Scholar

[16] A.K. Jonscher, Dielectric Relaxation in Solids. Chelsea Dielectrics Press, London, (1983).

Google Scholar

[17] S. Havriliak, S.J. Havriliak, Dielectric and Mechanical Relaxation in Materials. Hanser, Munich, (1997).

Google Scholar

[18] A.K. Jonscher, Dielectric relaxation in solids, J. Phys. D: Appl. Phys. 32 (1999) R57-R70.

DOI: 10.1088/0022-3727/32/14/201

Google Scholar

[19] David I. Bower, An Introduction to Polymer Physics, Cambridge University Press, (2002).

Google Scholar

[20] X. Zhang, G.M. Sessler, J. Hillenbrand, Improvement of piezoelectric coefficientof cellular polypropylenefilms by repeated expansions, J. Electrost 65 (2007)94-100.

DOI: 10.1016/j.elstat.2006.07.006

Google Scholar

[21] Xinwu. Zhang, Xiaoqing. Zhang, Piezoelectric and acoustic behavior of polypropylenepiezoelectret Films, Acta Physica Sinica 16(2013) 167702.

Google Scholar