Effect of Microstructure on Properties of NiCrBSi Alloys Applied by Flame-Powder Deposition

Article Preview

Abstract:

This article deals with studying the relationships among the chemical composition, microstructure and properties (hardness, micro-hardness, wear resistance) of powder additives based on NiCrBSi after their deposition. Tested materials reached a relatively wide range of hardness after deposition, which corresponds to their chemical composition and microstructure. The abrasive wear resistance of materials was tested on an emery cloth. The results indicate that both the hardness and abrasive wear resistance of tested materials depend especially on the content of carbon and chromium. Microstructural analysis indicates that the structure of tested materials is formed by the γ-Ni solid solution and intermediate phases based on boron, silicon and carbon. Those mostly form eutectics (three types), or are excluded by precipitation. There was also found a significant effect of chromium, but especially carbon content on the ratio between the solid solution and eutectics in the microstructure of tested materials. These different ratios of solid solution and eutectics were markedly reflected in micro-hardness behaviours in deposited layers. Micro-hardness values confirmed also the presence of carbidic particles in the layers with carbon content higher than 0.7 wt%.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1-9

Citation:

Online since:

December 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] P. Blaškovič, J. Balla, M. Dzimko, Tribológia (Tribology), 1st ed., ALFA, Bratislava, (1990).

Google Scholar

[2] P. Čičo, M. Bujna, Odolnosť tvrdonávarových materiálov v prevádzkových podmienkach (Resistance of hard-facing materials in operating conditions), 1st ed., Slovak University of Agriculture in Nitra, Nitra, (2011).

Google Scholar

[3] M. Müller, P. Hrabě, Overlay materials used for increasing lifetime of machine parts working under conditions of intensive abrasion, Res. Agr. Eng., 59 (2013) 16–22.

DOI: 10.17221/64/2011-rae

Google Scholar

[4] O. Knotek, Thermal spraying and detonation gun processes, in: R. F. Bunshah et al. (Eds. ), Handbook of Hard Coatings. Deposition Technologies, Properties and Applications, Noyes Publications, Park Ridge, 2001, p.77–107.

Google Scholar

[5] P. Blaškovitš, M. Čomaj, Renovácia naváraním a žiarovým striekaním (Renovation by hard-facing and thermal spraying), 1st ed., Slovak University of Technology, Bratislava, (2005).

Google Scholar

[6] J. Jasenák, Technologické aspekty spevňovania niklových návarov (Technological aspects of nickel hard-facing reinforcement), 1st ed., AlumniPress, Trnava, (2005).

Google Scholar

[7] R. Chotěborský, P. Hrabě, M. Müller, J. Savková, M. Jirka, Abrasive wear of high chromium Fe-Cr-C hardfacing alloys, Res. Agr. Eng., 54 (2008) 192–198.

DOI: 10.17221/1/2008-rae

Google Scholar

[8] I. Kovaříková, P. Blaškovitš, Abrazívne opotrebenie (Abrasive wear), Strojárstvo, 3 (2007) 62–63.

Google Scholar

[9] J. Suchánek, V. Kuklík, E. Zdravecká, Abrazívní opotřebení materiálů (Abrasive wear of materials), 1st ed., ČVUT, Praha, (2007).

Google Scholar

[10] M. Brožek, A. Nováková, R. Mikuš, Study of wear resistance of hard facings using welding powders on the NiCrBSi basis, in: Trends in Agricultural Engineering 2010 (conference proceedings), ČZU, Praha, 2010, p.115–118.

Google Scholar

[11] M. Kotus, Z. Andrássyová, P. Čičo, J. Fries, P. Hrabě, Analysis of wear resistant weld materials in laboratory conditions, Res. Agr. Eng., 57 (2011) S74–S78.

DOI: 10.17221/56/2010-rae

Google Scholar

[12] T. Pauliček, M. Kotus, M. Daňko, P. Žúbor, Resistance of hard-facing deposit created by laser surfacing technology, Advanced Materials Research, 801 (2013) 117–122.

DOI: 10.4028/www.scientific.net/amr.801.117

Google Scholar

[13] R. Mikuš, P. Polák, Určovanie mernej hmotnosti materiálov typu NiCrBSi (Determination of specific density of NiCrBSi materials), in: J. Žarnovský et al. (Eds. ), Kvalita a spoľahlivosť technických systémov (Quality and Reliability of Technical Systems), Slovak University of Agriculture in Nitra, Nitra, 2014, p.273.

Google Scholar

[14] Information on http: /stellite. com/Portals/0/KMT_Stellite_Alloys_Brochure_FINAL. pdf.

Google Scholar

[15] Information on http: /www. hoganasthermalspray. com/product. html/powder-choice? category_id=22.

Google Scholar

[16] Information on http: /www. vuz. sk/vyroba_pm_3_7_3. html.

Google Scholar

[17] Information on http: /www. svarak. cz/c/cz/plamenopraskove-stavovane-povlaky-a-jejich-vyuziti-v-praxi. htm.

Google Scholar

[18] M. Mrdak, A. Vencl, M. Cosis, Microstructure and mechanical properties of the Mo-NiCrBSi coating deposited by atmospheric plasma spraying, FME Transactions, 37 (2009) 27–32.

Google Scholar

[19] M. Mrdak, Microstructure and mechanical properties of nickel-chrome-bor-silicon layers produced by the atmospheric plasma spray process, Vojnotehnički Glasnik/Military Technical Courier, LX(1) (2012) 183–200.

DOI: 10.5937/vojtehg1201183m

Google Scholar

[20] R. Gonzáles, M. A. García, I. Peñuelas, M. Cadenas, M. del Rocío Fernández, A. Hernández Battez, D. Felgueroso, Microstructural study of NiCrBSi coatings obtained by different processes, Wear, 263 (2007) 619–624.

DOI: 10.1016/j.wear.2007.01.094

Google Scholar

[21] K. Šimunović, I. Kladarić, D. Krumes, Investigation of substrate microstructure after flame spraying and fusing, Strojárstvo, 50 (2008) 213–220.

Google Scholar

[22] T. Liyanage, G. Fisher, A. P. Gerlich, Influence of alloy chemistry on microstructure and properties in NiCrBSi overaly coatings deposited by plasma-transferred arc welding (PTAW), Surface and Coatings Technology, 205 (2010) 759–765.

DOI: 10.1016/j.surfcoat.2010.07.095

Google Scholar

[23] L. Trnková, P. Grgač, Priebeh tuhnutia a vývoj mikroštruktúry tvrdonávarovej zliatiny typu NiCrSiB (Solidification process and microstructure evolution of hardfacing alloy of NiCrSiB type), Materials Science and Technology, 5 (2005) 1–10.

Google Scholar

[24] I. Hemmati, J. C. Rao, V. Ocelík, J. T. M. De Hosson, Electron microscopy characterization of Ni-Cr-B-Si-C laser deposited coatings, Microscopy and Microanalysis, 19 (2013) 120–131.

DOI: 10.1017/s1431927612013839

Google Scholar