Nitrogen Effect on Mechanical and Tribological Properties of STN 41 5230 Steel Surface Layer

Article Preview

Abstract:

The subject-matter of this article is using diffusion processes to obtain chemically stable compounds with a low reactivity and higher mechanical properties in material surface layer. These processes were implemented by remelting the surface of a given material in arc process using a TIG welding method. Nitrogen was used as an alloying element in experiments. The experiment assumed that the dissociation and ionization of gases, enabling the ionization of diffusion processes in the surface layer of remelted steel, will be achieved by means of electric arc. Conditions for the formation of hard and stable structures with required properties should have been created by enriching the surface layer. The STN 41 5230 steel was used in experiments. After remelting, samples were examined on hardness and relative abrasive wear resistance, which are crucial in terms of required properties of given surface layers. In addition to hardness values in the surface layer, also its behaviour inwards the material up to thermally unaffected base material was determined. When remelting in the environment containing nitrogen, the values of examined quantities increased.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

11-17

Citation:

Online since:

December 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] P. Polák, J. Žitňanský, Optimalizácia výrobného technologického postupu zadaného dielca, in: Proceedings of the Quality and Reliability of Technical Systems 2013, Slovak University of Agriculture in Nitra, Nitra, 2013, p.153–160.

Google Scholar

[2] J. Žitňanský, P. Polák, R. Bernát, Z. Záležák, Vplyv rezných podmienok na rozmerovú presnosť, tvar a drsnosť obrábaných dielcov, in: Proceedings of the Quality and Reliability of Technical Systems 2014, Slovak University of Agriculture in Nitra, Nitra, 2014, p.173.

Google Scholar

[3] M. Kotus, Š. Drahoš, Stanovenie odolnosti proti abrazívnemu opotrebeniu v laboratórnych podmienkach, in: Proceedings of the Quality and Reliability of Technical Systems 2010, Slovak University of Agriculture in Nitra, Nitra, 2010, p.153–160.

Google Scholar

[4] P. Čičo, M. Bujna, Odolnosť tvrdonávarových materiálov v prevádzkových podmienkach, first ed., Slovak University of Agriculture in Nitra, Nitra, 2011, 119 pp.

Google Scholar

[5] S. S Babu et al., Reactive gas shielding during laser surface alloying for production of hard coatings, Surface & Coatings Technology, 200 (2006) 2663–2671.

DOI: 10.1016/j.surfcoat.2005.02.160

Google Scholar

[6] M. A Béjar, E. Oreno, Abrasive wear resistance of boronized carbon and low-alloy steels, Journal of Materials Processing Technology, 173(3) (2006) 352–358.

DOI: 10.1016/j.jmatprotec.2005.12.006

Google Scholar

[7] M. Kotus, Stanovenie odolnosti prídavných materiálov pri vytvorení jednovrstvových návarov, in: Technická diagnostika strojů a výrobních zařízení DIAGO 2010, Vysoká škola báňská – Technická univerzita, Ostrava, 2010, p.196–201.

DOI: 10.15584/eti.2018.4.48

Google Scholar

[8] D.I. Pantelis et al., Wear and corrosion resistance of laser surface hardened structural steel, Surface & Coatings Technology, 298 (2002) 125–134.

DOI: 10.1016/s0257-8972(02)00495-4

Google Scholar

[9] M.V. Leite et al., Wear mechanisms and microstructure of pulsed plasma nitrided AISI H13 tool steel, Wear, 269 (2010) 466–472.

DOI: 10.1016/j.wear.2010.04.037

Google Scholar

[10] I. Hrivňák, Zváranie a zvariteľnosť materiálov, Vydavateľstvo STU, Bratislava, 2009, 486 pp.

Google Scholar

[11] P. Švec, V. Pulc, Ľ. Čaplovič, A. Brusilová, Z. Gábrišová, Hot pressing of B4C based ceramics, Materials Engineering, 14(2) (2007), 69–72.

Google Scholar

[12] P. Švec, A. Brusilová, Mechanical properties and wear of hot pressed silicon nitride, in: Scientific Proceedings 2009, STU Bratislava, 216 pp.

Google Scholar