Hardpan Location and Crop Yield: From Information to Precision Tillage Map

Article Preview

Abstract:

This paper explores the incidence of hardpans in a field of 14.27 ha. Emphasis is placed on winter wheat yield and its comparison with hardpan location. The objective of this study was to determine prescriptions of different tillage depths for a precision tillage map. In order to meet the above objectives, laboratory and field experiments were conducted based on the experiment design with 60 monitoring points. The results of experiments confirmed the within-field spatial variability of hardpans and crop yield and revealed areas where yield is influenced by detrimental compaction.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

27-33

Citation:

Online since:

December 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. N. Landers, P. L. de Freitas, Zero tillage cotton systems and soil quality, in: EGU General Assembly 2012, held 22–27 April, 2012 in Vienna, Austria, information on http: /adsabs. harvard. edu/abs/2012EGUGA. 1413723L.

Google Scholar

[2] D. Hillel, Environmental soil physics, Academic Press, Division of Harcourt Brace and Company San Diego, CA, USA, (1998).

Google Scholar

[3] R. L. Raper, D. W. Reeves, Reducing soil compaction with in-row subsoiling and controlled traffic, in: Proceedings of Session IV of the 2004 CIGR International Conference October, Beijing, China, 2004a.

Google Scholar

[4] R. L. Raper, Vehicle traffic impacts on soil, Terramechanics Journal, 42(3–4) (2005) 259–280.

DOI: 10.1016/j.jterra.2004.10.010

Google Scholar

[5] ASAE Standards, 45th ed., EP291. 2, Terminology and definitions for soil tillage and soil-tool relationships, ASAE, St. Joseph, Michigan, (1999).

Google Scholar

[6] H. M. Taylor, H. R. Gardner, Penetration of cotton seedlings taproots as influenced by bulk density, moisture content and strength of soil, Soil Science, 96 (1963) 153–156.

DOI: 10.1097/00010694-196309000-00001

Google Scholar

[7] ASAE Standards, 50th ed., EP542, Procedures for using and reporting data obtained with the soil cone penetrometer, ASAE, St. Joseph, Michigan, 2004a.

Google Scholar

[8] M. A. Hamza, W. K. Anderson, Soil compaction in cropping systems: A review of the nature, causes and possible solutions, Soil Tillage Research, 82 (2005) 121–145.

DOI: 10.1016/j.still.2004.08.009

Google Scholar

[10] K. Fiala, J. Kobza, Ľ. Matúšková, V. Brečková, J. Makovníková, G. Barančíková, V. Búrik, T. Litavec, B. Houšková, A. Chromaničová, D. Váradiová, B. Pechová, Záväzné metódy rozborov pôd. Čiastkový monitorovací systém – pôda, VÚPOP, Bratislava, (1999).

Google Scholar

[11] STN 72 1012: Laboratórne stanovenie vlhkosti pôd. (Slovak technical standard: Determination of soil moisture in laboratory conditions).

Google Scholar

[12] Zákon č. 220/2004 Z. z. o ochrane a využívaní poľnohospodárskej pôdy a o zmene zákona č. 245/2003 Z. z. o integrovanej prevencii a kontrole znečisťovania životného prostredia a o zmene a doplnení niektorých zákonov. (Slovak Act No 220/2004 on Protection and Use of Agricultural Land).

Google Scholar

[13] J. K. Berry, The precision farming primer, Berry & Associates / Spatial Information Systems Inc., Fort Collins, Colorado, USA, 1999, information on http: /www. innovativegis. com/basis/pfprimer/Default. html.

Google Scholar

[14] D. Rooney, M. Stelford, D. Landolt, Site-specific soil compaction mapping using a digital penetrometer, Site-specific management guidelines SSMG-34, Potash & Phosphate Institute (PPI), undated.

Google Scholar

[15] K. Kollárová, J. Ďuďák, M. Žitňák, J. Simoník, Prescribing a tillage depth based on geo-referenced soil compaction, Acta Technologica Agriculturae, 12(3) (2009) 71–76.

Google Scholar

[16] M. Žitňák, M. Korenko, Technical-economic indicators in the sugar beet transportation management, Research in Agricultural Engineering, 57(2) (2011) S63–S71.

DOI: 10.17221/29/2010-rae

Google Scholar