[1]
P. Sehgal, V. Tarasov, E. Zadok. Optimizing energy and performance for server-class file system workloads. ACM Transactions on Storage (TOS), 2010, 6(3): 10.
DOI: 10.1145/1837915.1837918
Google Scholar
[2]
R. T. Kaushik, M. Bhandarkar. Greenhdfs: towards an energy-conserving, storage-efficient, hybrid hadoop compute cluster. Proceedings of the USENIX Annual Technical Conference. 2010: 109.
Google Scholar
[3]
Power Scorecard. Electricity from Coal, Retrieved in April 2008. http: /www. powerscorecard. org/tech detail. cfm?resource id=2.
Google Scholar
[4]
F. Ahmad and T. N. Vijaykumar. Joint optimization of idle and cooling power in data centers while maintaining response time. In Proceedings of the Architectural support for programming languages and operating systems (ASPLOS), (2010).
DOI: 10.1145/1736020.1736048
Google Scholar
[5]
Facts & Stats: Data Architecture and More Data. http: /blog. infotech. com/facts-stats/facts-stats-data-architecture-and-more-data.
Google Scholar
[6]
W. Huang, M. Allen-Ware, J. B. Carter, et al. Tapo: Thermal-aware power optimization techniques for servers and data centers. Green Computing Conference and Workshops (IGCC), 2011 International. IEEE, 2011: 1-8.
DOI: 10.1109/igcc.2011.6008610
Google Scholar
[7]
M. Polverini, A. Cianfrani, S. Ren, et al. Thermal-Aware Scheduling of Batch Jobs in Geographically Distributed Data Centers. IEEE Transactions on cloud computing, 2014, vol. 2, no. 1, pp.71-84.
DOI: 10.1109/tcc.2013.2295823
Google Scholar
[8]
Mukherjee K, Khuller S, Deshpande A. Algorithms for the thermal scheduling problem[C]/Parallel & Distributed Processing (IPDPS), 2013 IEEE 27th International Symposium on. IEEE, 2013: 949-960.
DOI: 10.1109/ipdps.2013.97
Google Scholar
[9]
S. Albers, H. Fujiwara. Energy-efficient algorithms for flow time minimization,. In Proc. of STACS (2006).
Google Scholar
[10]
A. Wierman, L.L.H. Andrew, A. Tang. Power-Aware Speed Scaling in Processor Sharing Systems,. In Proc. of IEEE Infocom (2009).
DOI: 10.1109/infcom.2009.5062123
Google Scholar
[11]
YAO, F., DEMERS, A., AND SHENKER, S. 1995. A scheduling model for reduced CPU energy. In Proceedings of the IEEE Syposium on Foundations of Computer Science. IEEE Computer Society Press, Los Alamitos, CA, 374–382.
DOI: 10.1109/sfcs.1995.492493
Google Scholar
[12]
Moore J D, Chase J S, Ranganathan P, et al. Making Scheduling" Cool": Temperature-Aware Workload Placement in Data Centers. USENIX annual technical conference, General Track. 2005: 61-75.
Google Scholar
[13]
Heller B, Seetharaman S, Mahadevan P, et al. ElasticTree: Saving Energy in Data Center Networks. NSDI. 2010, 10: 249-264.
Google Scholar
[14]
W. Fang, X. Liang, S. Li, L. Chiaraviglio, and N. Xiong, VMPlanner: optimizing virtual machine placement and traffic flow routing to reduce network power costs in cloud data centers, J. Computer Network, vol. 57, no. 1, p.179–196, Jan. (2013).
DOI: 10.1016/j.comnet.2012.09.008
Google Scholar
[15]
Bostoen T, Mullender S, Berbers Y. Power-reduction techniques for data-center storage systems[J]. ACM Computing Surveys (CSUR), 2013, 45(3): 33.
DOI: 10.1145/2480741.2480750
Google Scholar