A Higher-Dimensional Lie Algebra and 4×4 Discrete Soliton Hierarchy with Self-Consistent Sources

Article Preview

Abstract:

In this paper, we aim to construct a super integrable discrete soliton hierarchy with self-consistent sources. A new isospectral problem is firstly presented, and we consider a discrete soliton hierarchy with self-consistent sources by using Lie algebra . Then, a new higher dimensional super integrable discrete soliton hierarchy with self-consistent sources is obtained. The method can be generalized to other soliton hierarchy with self-consistent sources.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 1061-1062)

Pages:

1051-1054

Citation:

Online since:

December 2014

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] W. X. Ma, Soliton, Positon and Negaton Solutions to a Schrodinger Self-consistent sources. J. Phys. Soc. Jpn. 72 (2003) 3017-3019.

DOI: 10.1143/jpsj.72.3017

Google Scholar

[2] J. Y. Ge and T. C. Xia, A New Integrable Couplings of Classical-Boussinesq Hierarchy with Self-Consistent Sources. Comm. Theor. Phys. 54 (2010) 1-6.

DOI: 10.1088/0253-6102/54/1/01

Google Scholar

[3] T. C. Xia, Integrable Couplings of Classical-Boussinesq Hierarchy and Its Hamiltonian Structure. Commun. Theor. Phys. 53 (2010) 25-27.

DOI: 10.1088/0253-6102/53/1/06

Google Scholar

[4] P. R. Gordoa and A. Pickering, Backlund transformations for two new integrable partial differential equations, Europhys. Lett. 47 (1999) 21-24.

DOI: 10.1209/epl/i1999-00344-9

Google Scholar

[5] P.R. Gordoa and A. Pickering. On a new non-isospectral variant of the Boussinesq hierarchy. J. Phys. A. (2000)557-567.

DOI: 10.1088/0305-4470/33/3/309

Google Scholar

[6] G. Z. Tu, A trace identity and its applications to the theory of discrete integrable systems, J. Phys. A. 26 (1990) 3903-3922.

Google Scholar

[7] A. K. Svinin, Extension of the discrete KP hierarchy, J. Phys. A: Math. Gen. 35 (2002) 2045-(2056).

DOI: 10.1088/0305-4470/35/8/317

Google Scholar

[8] D. Levi and L. Martina, Integrable Hierarchies of Nonlinear Differrence Difference Equations and symmetries, J. Phys. A: Math. Gen. 34 (2001) 10357-10368.

DOI: 10.1088/0305-4470/34/48/302

Google Scholar

[9] G. Pucacco and K. Rosquist, Integrable Hamiltonian systems with vector potentials, J. Math. Phys. 46 (2005) 012701.

DOI: 10.1063/1.1818721

Google Scholar

[10] T. Tsuchida, H. Ujino and M. K. Wadati, Integrable semi-discretization of the coupled modied KdV equations, J. Math. Phys. 39 (1998) 4785-4813.

DOI: 10.1063/1.532537

Google Scholar

[11] W. X. Ma, A discrete variational identity on semi-direct sums of Lie algebras, J. Phys. A. 40 (2007) 15055-15069.

DOI: 10.1088/1751-8113/40/50/010

Google Scholar

[12] Y. F. Zhang, A Complex Higher-Dimensional Lie Algebra with Real and Imaginary Struc- ture Constants as Well as Its Decomposition, Commun. Theo. Phys(China). 50 (2008) 1021-1026.

DOI: 10.1088/0253-6102/50/5/01

Google Scholar

[13] H. Tam and Z. Zhu, (2+1)-dimensional integrable lattice hierarchies related to discrete fourth-order nonisospectral problems, J. Phys.A. 40 (2007) 13031-13045.

DOI: 10.1088/1751-8113/40/43/012

Google Scholar