[1]
W. X. Ma, Soliton, Positon and Negaton Solutions to a Schrodinger Self-consistent sources. J. Phys. Soc. Jpn. 72 (2003) 3017-3019.
DOI: 10.1143/jpsj.72.3017
Google Scholar
[2]
J. Y. Ge and T. C. Xia, A New Integrable Couplings of Classical-Boussinesq Hierarchy with Self-Consistent Sources. Comm. Theor. Phys. 54 (2010) 1-6.
DOI: 10.1088/0253-6102/54/1/01
Google Scholar
[3]
T. C. Xia, Integrable Couplings of Classical-Boussinesq Hierarchy and Its Hamiltonian Structure. Commun. Theor. Phys. 53 (2010) 25-27.
DOI: 10.1088/0253-6102/53/1/06
Google Scholar
[4]
P. R. Gordoa and A. Pickering, Backlund transformations for two new integrable partial differential equations, Europhys. Lett. 47 (1999) 21-24.
DOI: 10.1209/epl/i1999-00344-9
Google Scholar
[5]
P.R. Gordoa and A. Pickering. On a new non-isospectral variant of the Boussinesq hierarchy. J. Phys. A. (2000)557-567.
DOI: 10.1088/0305-4470/33/3/309
Google Scholar
[6]
G. Z. Tu, A trace identity and its applications to the theory of discrete integrable systems, J. Phys. A. 26 (1990) 3903-3922.
Google Scholar
[7]
A. K. Svinin, Extension of the discrete KP hierarchy, J. Phys. A: Math. Gen. 35 (2002) 2045-(2056).
DOI: 10.1088/0305-4470/35/8/317
Google Scholar
[8]
D. Levi and L. Martina, Integrable Hierarchies of Nonlinear Differrence Difference Equations and symmetries, J. Phys. A: Math. Gen. 34 (2001) 10357-10368.
DOI: 10.1088/0305-4470/34/48/302
Google Scholar
[9]
G. Pucacco and K. Rosquist, Integrable Hamiltonian systems with vector potentials, J. Math. Phys. 46 (2005) 012701.
DOI: 10.1063/1.1818721
Google Scholar
[10]
T. Tsuchida, H. Ujino and M. K. Wadati, Integrable semi-discretization of the coupled modied KdV equations, J. Math. Phys. 39 (1998) 4785-4813.
DOI: 10.1063/1.532537
Google Scholar
[11]
W. X. Ma, A discrete variational identity on semi-direct sums of Lie algebras, J. Phys. A. 40 (2007) 15055-15069.
DOI: 10.1088/1751-8113/40/50/010
Google Scholar
[12]
Y. F. Zhang, A Complex Higher-Dimensional Lie Algebra with Real and Imaginary Struc- ture Constants as Well as Its Decomposition, Commun. Theo. Phys(China). 50 (2008) 1021-1026.
DOI: 10.1088/0253-6102/50/5/01
Google Scholar
[13]
H. Tam and Z. Zhu, (2+1)-dimensional integrable lattice hierarchies related to discrete fourth-order nonisospectral problems, J. Phys.A. 40 (2007) 13031-13045.
DOI: 10.1088/1751-8113/40/43/012
Google Scholar