[1]
P.R. Gordoa and A. Pickering. On a new non-isospectral variant of the Boussinesq hierarchy. J. Phys. A. (2000)557-567.
DOI: 10.1088/0305-4470/33/3/309
Google Scholar
[2]
P.R. Gordoa, N. Joshi, and A. Pickering. On a generalized dispersive water wave hierarchy. Publ. RIMS (Kyoto) (2001)327-347.
DOI: 10.2977/prims/1145477227
Google Scholar
[3]
J. Leon and A. Latifi. Solution of an initial-boundary value problem for coupled nonlinear waves. J. Phys. A: Math. Gen. (1990) 1385-1403.
DOI: 10.1088/0305-4470/23/8/013
Google Scholar
[4]
G.Z. Tu. A trace identity and its applications to the theory of discrete integrable systems. J. Phys.A. (1990)3903-3922.
Google Scholar
[5]
W.X. Ma and B. Fuchssteiner. Algebraic structures of discrete zero curvature equations and master symmetries of discrete evolution equations, J. Math. Phys. (1999)2400-2418.
DOI: 10.1063/1.532872
Google Scholar
[6]
A.K. Svinin. Extension of the discrete KP hierarchy, J. Phys. A: Math. Gen. (2002)2045-(2056).
DOI: 10.1088/0305-4470/35/8/317
Google Scholar
[7]
G.Z. Tu. The trace identity, a powerful tool for constructing the Hamiltonian structure of integrable systems. J Math Phys. (2)(1989)330-338.
DOI: 10.1063/1.528449
Google Scholar
[8]
T. Tsuchida, H. Ujino and M.K. Wadati. Integrable semi-discretization of the coupled modified KdV equations, J Math Phys (1998)4785-4813.
DOI: 10.1063/1.532537
Google Scholar
[9]
Y.F. Zhang, H. Q. Zhang. A direct method for integrable couplings of TD hierarchy, J Math Phys. (2002)466-472.
DOI: 10.1063/1.1398061
Google Scholar
[10]
Y.F. Zhang, H. Q. Zhang, A Liouville integrable hierarchy and its Lax expression of constrained flows as well as Darboux transformation, Applied Mathematics and Mechanics. (1)(2002)23-30.
Google Scholar
[11]
S.M. Zhu, Y.T. Wu and Q.Y. Shi. A hierarchy of integrable lattice soliton equations and its integrable symplectic map, Ann. of Dif. Eqs. (3)(2000) 308-314.
Google Scholar