A New 3×3 Discrete Soliton Hierarchy with Self-Consistent Sources

Article Preview

Abstract:

In this paper, we consider a discrete soliton hierarchy with self-consistent sources by using higher-dimensional matrix spectral problem. Then a new discrete soliton hierarchy with self-consistent sources is obtained.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 1061-1062)

Pages:

1055-1058

Citation:

Online since:

December 2014

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] P.R. Gordoa and A. Pickering. On a new non-isospectral variant of the Boussinesq hierarchy. J. Phys. A. (2000)557-567.

DOI: 10.1088/0305-4470/33/3/309

Google Scholar

[2] P.R. Gordoa, N. Joshi, and A. Pickering. On a generalized dispersive water wave hierarchy. Publ. RIMS (Kyoto) (2001)327-347.

DOI: 10.2977/prims/1145477227

Google Scholar

[3] J. Leon and A. Latifi. Solution of an initial-boundary value problem for coupled nonlinear waves. J. Phys. A: Math. Gen. (1990) 1385-1403.

DOI: 10.1088/0305-4470/23/8/013

Google Scholar

[4] G.Z. Tu. A trace identity and its applications to the theory of discrete integrable systems. J. Phys.A. (1990)3903-3922.

Google Scholar

[5] W.X. Ma and B. Fuchssteiner. Algebraic structures of discrete zero curvature equations and master symmetries of discrete evolution equations, J. Math. Phys. (1999)2400-2418.

DOI: 10.1063/1.532872

Google Scholar

[6] A.K. Svinin. Extension of the discrete KP hierarchy, J. Phys. A: Math. Gen. (2002)2045-(2056).

DOI: 10.1088/0305-4470/35/8/317

Google Scholar

[7] G.Z. Tu. The trace identity, a powerful tool for constructing the Hamiltonian structure of integrable systems. J Math Phys. (2)(1989)330-338.

DOI: 10.1063/1.528449

Google Scholar

[8] T. Tsuchida, H. Ujino and M.K. Wadati. Integrable semi-discretization of the coupled modified KdV equations, J Math Phys (1998)4785-4813.

DOI: 10.1063/1.532537

Google Scholar

[9] Y.F. Zhang, H. Q. Zhang. A direct method for integrable couplings of TD hierarchy, J Math Phys. (2002)466-472.

DOI: 10.1063/1.1398061

Google Scholar

[10] Y.F. Zhang, H. Q. Zhang, A Liouville integrable hierarchy and its Lax expression of constrained flows as well as Darboux transformation, Applied Mathematics and Mechanics. (1)(2002)23-30.

Google Scholar

[11] S.M. Zhu, Y.T. Wu and Q.Y. Shi. A hierarchy of integrable lattice soliton equations and its integrable symplectic map, Ann. of Dif. Eqs. (3)(2000) 308-314.

Google Scholar