Effects of Substrate Temperature on the Properties of Cu(In,Ga)Se2 Thin Films Prepared by Sputtering from a Quaternary Target

Article Preview

Abstract:

Cu (In,Ga)Se2 (CIGS) thin films were prepared by direct magnetron sputtering CIGS quaternary target at the substrate temperature varying from room temperature (RT) to 300 °C. The effects of substrate temperature on the structural and electrical properties of CIGS films were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray (EDX) and Hall effect measurement. The CIGS thin films with a chalcopyrite structure were obtained between 100 and 300 °C and the crystallinity of films were enhanced with the increase of the substrate temperature from 100 to 300 °C. The film compositions were consisted with the target when the substrate temperatures were between RT and 200 °C, however, it deviated from the stoichiometry of the target when the substrate temperature was 300 °C. The CIGS films deposited at 200 °C had the higher carrier mobility of 3.522 cm2/Vs.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 1061-1062)

Pages:

209-214

Citation:

Online since:

December 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Martin A. Green, Keith Emery, David L. King, Sanekazu Igari and Wilhelm Warta: Solar cell efficiency tables (Version 22)[J]. Prog. Photovolt: Res. Appl. 11(2003), p.347–352.

DOI: 10.1002/pip.499

Google Scholar

[2] P. Jackson, D. Hariskos and Erwin Lotter: Prog. Photovolt: Res. Appl. 19 (2011), p.894–897.

Google Scholar

[3] I. Repins, M. A. Contreras, B. Egaas, C. DeHart, J. Scharf, C. L. Perkins, B. To and R. Noufi. Prog. Photovolt: Res. Appl. 16 (2008), p.235–239.

DOI: 10.1002/pip.822

Google Scholar

[4] P. Jackson, R. Wurz, U. Rau, J. Mattheis, M. Kurth, T. Schlotzer, G. Bilger, J.H. Werner: Prog. Photovolt: Res. Appl: 15 (2007), p.507–519.

DOI: 10.1002/pip.757

Google Scholar

[5] A. Han, Y. Zhang, W. Song, B. Li, W. Liu and Y. Sun: Semicond. Sci. Technol. 27 (2012) , pp.1-8.

Google Scholar

[6] W. Li, Y. Sun, W. Liu and L. Zhou: Sol. Energ. 80 (2006), pp.191-195.

Google Scholar

[7] S. Ishizuka, A. Yamada, P. Fons and S. Niki: Prog. Photovolt. 21 (2013), p.544–553.

Google Scholar

[8] C.Y. Su, W.H. Ho, H.C. Lin, C.Y. Nieh, S.C. Liang: Sol Energ Mater & Sol Cells. 95 (2011). p.261–263.

Google Scholar

[9] F. Kang, J. P. Ao, G.Z. Sun, Q. He and Y. Sun: Curr. App. Phys. 10 (2010). p.886–888.

Google Scholar

[10] S.J. Ahn , K. H. Kim, J. H. Yun  and K. H. Yoon: J. Appl. Phys. 105 (2009). pp.1-7.

Google Scholar

[11] S. Yoon, T. Yoon, K. S. Lee, S. Yoon, J. M. Ha and S. Choe: Sol Energ Mater & Sol Cells, 93(2009). p.783–788.

Google Scholar

[12] C. Lei, A. Rockett, I.M. Robertson, W. N. Shafarman, M . Beck: J. Appl. Phys. 100 (2006). pp.1-5.

Google Scholar

[13] D. Liao, A. Rockett: J. Appl. Phys. 93(2003). pp.9380-9382.

Google Scholar

[14] M. Ruckh, D. Schmid, M. Kaiser, R. Schaffler, T. Walter and H.W. Schock , in: Proceedings of the First World Conference on Photovoltaic Energy Conversion. New York. 1994. p.156.

Google Scholar