Effect of Eu/Co Doping on the Resistive Switching Properties of BiFeO3 Thin Films

Article Preview

Abstract:

BiFeO3 and Eu/Co doped BiFeO3 thin films have been grown on Nb:SrTiO3 substrates with pulsed laser deposition using the same growth conditions. It was shown that the characteristic of resistive switching would be enhanced by Co doping. By changing the polarity of the external voltage, the BiFe0.95Co0.05O3 is witched between multilevel stable resistance states without an electroforming process. The resistance ratio is larger than two orders of magnitude and shows stable resistance states. The resistive switching is understood by the electric field-induced carrier trapping and detrapping, which changes the depletion layer thickness at the interface, oxygen vacancy and Co doping play important role in enhanced RS behavior. Keywords: Resistive switching, element doping, resistive switching mechanism.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 1061-1062)

Pages:

189-192

Citation:

Online since:

December 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Y. Fujisaki, Japanese Journal of Applied Physics, Vol. 49 (2010), p.100001.

Google Scholar

[2] A. Thomas, Journal of Physics D: Applied Physics, Vol. 46 (2013), p.093001.

Google Scholar

[3] R. Waser, R. Dittmann, G. Staikov and K. Szot, Advanced Materials, Vol. 21 (2009), p.2632.

Google Scholar

[4] D. S. Jeong, R. Thomas, R. S. Katiyar, J. F. Scott, H. Kohlstedt, A. Petraru and C. S. Hwang, Reports on Progress in Physics, Vol. 75 (2012), p.076502.

DOI: 10.1088/0034-4885/75/7/076502

Google Scholar

[5] E. Y. Tsymbal, A. Gruverman, V. Garcia, M. Bibes and A. Barthélémy, MRS Bulletin, Vol. 37 (2012), p.138.

DOI: 10.1557/mrs.2011.358

Google Scholar

[6] M. Li, F. Zhuge, X. Zhu, K. Yin, J. Wang, Y. Liu, C. He, B. Chen and R. -W. Li, Nanotechnology, Vol. 21 (2010), p.425202.

Google Scholar

[7] Z. Xu, K. Jin, L. Gu, Y. Jin, C. Ge, C. Wang, H. Guo, H. Lu, R. Zhao and G. Yang, Small, Vol. 8 (2012), p.1279.

Google Scholar

[8] M. C. Ni, S. M. Guo, H. F. Tian, Y. G. Zhao and J. Q. Li, Applied Physics Letters, Vol. 91 (2007), p.183502.

Google Scholar

[9] C. Wang, K.J. Jin, Z.T. Xu, L. Wang, C. Ge, H.B. Lu, H.Z. Guo, M. He and G.Z. Yang, Applied Physics Letters, Vol. 98 (2011), p.192901.

Google Scholar

[10] B. Yu, M. Li, Z. Hu, L. Pei, D. Guo, X. Zhao and S. Dong, Applied Physics Letters, Vol. 93 (2008), p.182909.

Google Scholar

[11] Z. Hu, M. Li, B. Yu, L. Pei, J. Liu, J. Wang and X. Zhao, Journal of Physics D: Applied Physics, Vol. 42 (2009), p.185010.

Google Scholar

[12] Y. Wang and J. Wang, Journal of Physics D: Applied Physics, Vol. 42 (2009), p.162001.

Google Scholar