Transverse Magnetoelectric Effect in Nickel Zinc Ferrite-Lead Zirconate Titanate Layered Composites

Article Preview

Abstract:

By using a elastic mechanics model the transverse magnetoelectric voltage coefficient of magnetostrictive-piezoelectric bilayer is derived according to the constitutive equations. The transverse magnetoelectric coupling of nickel zinc ferrite-lead zirconate titanate (Ni0.8Zn0.2Fe2O4–Pb (Zr,Ti)O3, NZFO-PZT) layered composites were calculated by using the corresponding material parameters of individual phases. NZFO samples have been synthesized with sol–gel technique. Layered composites NZFO-PZT and NZFO-PZT-NZFO have been fabricated by binding discs of NZFO and commercially available PZT, and the transverse magnetoelectric effect have been investigated. The peak value of transverse magnetoelectric voltage coefficient for NZFO-PZT-NZFO trilayer reaches 252.4 mV/cmOe under a bias magnetic field of about 320 Oe, which is about three times as large as that of NZFO-PZT bilayer. The interface coupling parameter of trilayer is significantly higher than that of bilayer.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 1061-1062)

Pages:

184-188

Citation:

Online since:

December 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] I. J. Busch-Vishniac: Phys. Today Vol. 51 (1998), p.28.

Google Scholar

[2] J. Ma, J. Hu, Z. Li, et al.: Adv. Mater. Vol. 23 (2011), p.1062.

Google Scholar

[3] Y. Wang, D. Gray, D. Berry, et al.: Adv. Mater. Vol. 23 (2011), p.4111.

Google Scholar

[4] J. Van Suchtelen: Phillips Res. Rep. Vol. 27 (1972), p.28.

Google Scholar

[5] C. W. Nan: Phys. Rev. B Vol. 50 (1994), p.6082.

Google Scholar

[6] M. B. Kothale, K. K. Patankar, S. L. Kadam, et al.: Materials Chemistry and Physics Vol. 77 (2003), p.691.

Google Scholar

[7] S. A. Lokare, R. S. Devan and B. K. Chougule: Journal of alloys and compounds Vol. 454 (2008), p.471.

Google Scholar

[8] G. Srinivasan, E. T. Rasmussen, J. Gallegos, et al.: Phys. Rev. B Vol. 64 (2001), pp.214408-1.

Google Scholar

[9] G. Srinivasan, E. T. Rasmussen and R. Hayes: Phys. Rev. B Vol. 67 (2003), pp.014418-1.

Google Scholar

[10] C. W. Nan, N. Cai, Z. Shi, et al.: Phys. Rev. B Vol. 71 (2005), pp.014102-1.

Google Scholar

[11] J. G. Wan, X. W. Wang, Y. J. Wu, et al.: Appl. Phys. Lett. Vol. 86 (2005), pp.122501-1.

Google Scholar

[12] G. Sreenivasulu, S. K. Mandal, S. Bandekar, et al.: Phys. Rev. B Vol. 84 (2011), pp.144426-1.

Google Scholar

[13] M. I. Bichurin, V. M. Petrov and G. Srinivasan: Phys. Rev. B Vol. 68 (2003), pp.054402-1.

Google Scholar

[14] G. Srinivasan, E. T. Rasmussen, B. J. Levin, et al.: Phys. Rev. B Vol. 65 (2002), pp.134402-1.

Google Scholar

[15] S. X. Dong, J. F. Li and D. Viehland: IEEE Trans. Ultrason. Ferroelectr. Freq. Control Vol. 50 (2003), p.1253.

Google Scholar

[16] A. T. Taylor, S. T. Reczek and J. A. Rosen: J. Am. Ceram. Soc. Bull. Vol. 74(1995), p.91.

Google Scholar

[17] M. I. Bichurin, V. M. Petrov and G. Srinivasan: Ferroelectrics Vol. 280 (2002), p.165.

Google Scholar

[18] N. Zhang, D. K. Liang, T. Schneider, et al.: J. Appl. Phys. Vol. 101 (2007), pp.083902-1.

Google Scholar

[19] N. Zhang, J. F. Fan, X. F. Rong, et al.: J. Appl. Phys. Vol. 101 (2007), pp.063907-1.

Google Scholar