Preparation of One-Dimension Orthorhombic NaNbO3 Long Rods by Combining Hydrothermal Method with Post-Heat Treatment

Article Preview

Abstract:

One-dimensional orthorhombic NaNbO3 long rods were successfully prepared by combining a traditional hydrothermal method with the post-heat treatment. In the hydrothermal reaction process, sandia octahedral molecular sieves (SOMS) were synthesized at 160°C using Nb2O5 and NaOH as the initial reactants. Then, the effects of different post-heat treatment conditions on the morphology and crystallinity of product were investigated. Results showed that post-heat temperature could promote the crystal of the product to form orthorhombic NaNbO3, and the axis of the long rod ran along the [001] direction of NaNbO3 orthorhombic unit cell. Our study may provide a new approach for the preparation and investigation of one-dimensional alkali niobate photocatalytic materials and template grain for textured alkali niobium.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 1061-1062)

Pages:

193-200

Citation:

Online since:

December 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] T. Rojac, M. Kosec, B. Malič, J. Holc: Mater. Res. Bull Vol. 341-345 (2005), p.40.

DOI: 10.1016/j.materresbull.2004.10.018

Google Scholar

[2] S. Lanfredi, L. Dessemond, A.C. Martins Rodrigues: J. Eur. Ceram. Soc Vol. 983-990 (2000), p.20.

Google Scholar

[3] F. Bahri, H. Khemakhem, M. Gargouri, A. Simon, R. Von der Muhll, J. Ravez: Solid. State. Sci Vol. 1445-1450 (2003), p.24.

DOI: 10.1016/s1293-2558(03)00179-1

Google Scholar

[4] M.A. Nobre, E. Longo, E.R. Leite, J.A. Varela: Mater. Lett Vol. 215-220 (1996), p.28.

Google Scholar

[5] A. Molak, J. Kubacki: Cryst. Res. Technol. Vol. 893-902 (2001), p.36.

Google Scholar

[6] N. Anzai, H. Kurihara, M. Sone, H. Furukawa, T. Watanabe, K. Horie, S. Kumar: Liq. Cryst. Vol. 671-679 (2006), p.33.

Google Scholar

[7] H.F. Shi, T.Z. Wang, J. Chen, C. Zhu, J.H. Ye, Z.G. Zou: Catal. Lett. Vol. 525-530 (2011), p.141.

Google Scholar

[8] G.Q. Li, T. Kako, D.F. Wang, Z.G. Zou, J.H. Ye: J. Phys. Chem. Solids. Vol. 2487-2491 (2008), p.69.

Google Scholar

[9] E.R. Camargo, M. Popa, M. Kakihana: Chem. Mater. Vol. 2365-2368 (2002), p.14.

Google Scholar

[10] Q. Chen, D.Q. Xiao: J. Funct. Mater. Vol. 477-480 (2004), p.35.

Google Scholar

[11] Z.L. Zhang, L. Zhou: J. Chin. Ceram. Soc. Vol. 484-487 (2001), p.5.

Google Scholar

[12] C.H. Lu, S.Y. Lo, H.C. Lin: Mater. Lett. Vol. 172-176 (1998), p.34.

Google Scholar

[13] M.P. Pechini U.S. Patent. Vol. 330-697 (1967), p.3.

Google Scholar

[14] A. Yu, J.S. Qian, L. Liu, H. Pan, X.F. Zhou: Appl. Sur. Sci. Vol. 3490-3496 (2012), p.258.

Google Scholar

[15] H.W. Xu, M. Nyman, T.M. Nenoff, A. Navrotsky: Mater. Chem. Vol. 2034-2040 (2004), p.16.

Google Scholar

[16] H.Y. Zhu, Z.F. Zheng, X.P. Gao, Y. Huang, Z. Yan, J. Zou: J. Am. Chem. Soc. Vol. 2373-2384 (2006), p.128.

Google Scholar

[17] Y.B. Wan, Q. Zhao, X.G. Guo, J. Chen, J.H. Chu: J. Infrared Millim Waves Vol. 361-364 (2003), p.5.

Google Scholar