Resistive Switching Behavior in Pt/La0.7Sr0.3MnO3/Nb0.05Bi0.95FeO3/Nb:SrTiO3 Ferroelectric Heterostructure

Article Preview

Abstract:

we report reproducible resistive switching performance and relevant physical mechanism of Pt/La0.7Sr0.3MnO3/Nb0.05Bi0.95FeO3/Nb:SrTiO3 ferroelectric heterostructure which was fabricated by pulsed laser deposition. This device exhibits a nonvolatile resistive switching with a resistance ratio of up to 60 under 2V/-3V pulse voltages at room temperature. Low voltage readout, reliable resistance switching reproducibility and good time retention, indicating promise for non-destructive readout nonvolatile memories. In this metal/p-semiconductor/ferroelectric/n-semiconductor heterostructure, the mechanism of resistive switching behavior would be attributed to the ferroelectric polarization enhanced field-induced charge redistribution at the semiconductor/ferroelectric interface, resulting in the modulation of the interface barrier height. Keywords: Resistive switching, Ferroelectric resistive switching, Ferroelectric field effect.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 1061-1062)

Pages:

333-336

Citation:

Online since:

December 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] E. Y. Tsymbal, A. Gruverman, V. Garcia, M. Bibes and A. Barthélémy, MRS Bulletin, Vol. 37 (2012), p.138.

DOI: 10.1557/mrs.2011.358

Google Scholar

[2] Y.W. Yin, M. Raju, W.J. Hu, X.J. Weng, K. Zou, J. Zhu, X.G. Li, Z.D. Zhang and Q. Li, Frontiers of Physics, Vol. 7 (2012), p.380.

Google Scholar

[3] V. Garcia, S. Fusil, K. Bouzehouane, S. Enouz-Vedrenne, N. D. Mathur, A. Barthélémy and M. Bibes, nature, Vol. 460 (2009), p.81.

DOI: 10.1038/nature08128

Google Scholar

[4] A. Chanthbouala, V. Garcia, R. O. Cherifi, K. Bouzehouane, S. Fusil, X. Moya, S. Xavier, H. Yamada, C. Deranlot, N. D. Mathur, M. Bibes, A. Barthélémy and J. Grollier, Nature Materials, Vol. 11 (2012), p.860.

DOI: 10.1038/nmat3415

Google Scholar

[5] D. Pantel, H. Lu, S. Goetze, P. Werner, D. Jik Kim, A. Gruverman, D. Hesse and M. Alexe, Applied Physics Letters, Vol. 100 (2012), p.232902.

DOI: 10.1063/1.4726120

Google Scholar

[6] D. Pantel, S. Goetze, D. Hesse and M. Alexe, Nature Materials, Vol. 11 (2012), p.289.

Google Scholar

[7] S. M. Wu, S. A. Cybart, P. Yu, M. D. Rossell, J. X. Zhang, R. Ramesh and R. C. Dynes, Nature Materials, Vol. 9 (2010), p.756.

Google Scholar

[8] C. Wang, K. -j. Jin, Z. -t. Xu, L. Wang, C. Ge, H. -b. Lu, H. Guo, M. He and G.Z. Yang, Applied Physics Letters, Vol. 98 (2011), p.192901.

Google Scholar

[9] Z. Hu, M. Li, Y. Yu, J. Liu, L. Pei, J. Wang, X. Liu, B. Yu and X. Zhao, Solid State Communications, Vol. 150 (2010), p.1088.

Google Scholar

[10] J. Hoffman, X. Pan, J. W. Reiner, F. J. Walker, J. P. Han, C. H. Ahn and T. P. Ma, Advanced Materials, Vol. 22 (2010), p.2957.

Google Scholar

[11] T. Choi, S. Lee, Y. J. Choi, V. Kiryukhin and S. W. Cheong, Science, Vol. 324 (2009), p.63.

Google Scholar