Raising Lipid Content Improve Moisture Barrier of Soybean Protein-Isolation/Carboxymethyl Cellulose Composite Films

Article Preview

Abstract:

Three lipids (beeswax, palmitic acid and stearic acid) and a hydrophilic film (soybean protein-isolate/carboxymethyl cellulose film) were selected as a model to inspect the relation between the lipid state and barrier properties. The free-lipid ratio of composite films was the best indicator for the transparency rather than the moisture barrier. The free-lipid content/total-lipid content had the highest negative correlation factor with the moisture barrier. Hence, raising free-lipid ratio was effective to improve the moisture barrier of hydrophilic films.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 1061-1062)

Pages:

351-354

Citation:

Online since:

December 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] X. Zhao, K. Guo, C. Zhang, Y. Ma, X. Li: Adv. Mater. Res. Vol 335-336 (2011), p.312.

Google Scholar

[2] L. Abugoch, C. Tapia, M. Villamán, M. Yazdani-Pedram, M. Díaz-Dosque: Food Hydrocolloid. Vol 25 (2011), p.879.

DOI: 10.1016/j.foodhyd.2010.08.008

Google Scholar

[3] X. Li, K. Guo, X. Zhao: Adv. Mater. Res. Vol 150-151 (2010), p.1396.

Google Scholar

[4] C. Zhang, Y. Ma, X. Zhao, D. Ma: J. Food Sci. Vol 75 (2010), p. C493.

Google Scholar

[5] H.J. Park, J.M. Bunn, P.J. Weller: Trans. ASAEVol 37 (1994), p.1281.

Google Scholar

[6] A. Jiménez, M.J. Fabra, P. Talens, A. Chiralt: Carbohyd. Polymer. Vol 82 (2010), p.585.

Google Scholar

[7] R.L. Wu, X.L. Wang, Y.Z. Wang, X.C. Bian, F. Li: Indust. Eng. Chem. Res. Vol 48 (2009), p.7132.

Google Scholar

[8] P. Guerrero, K. Caba: J. Food Eng. Vol 100 (2010), p.261.

Google Scholar

[9] G.A. Denavi, M. Pérez-Mateos, M.C. Añón, P. Montero, A.N. Mauri, M.C. Gómez-Guillén: Food Hydrocolloid. Vol 23 (2009), p. (2094).

DOI: 10.1016/j.foodhyd.2009.03.007

Google Scholar

[10] T.H. McHugh: Food/Nahrung, Vol 44 (2000), p.148.

Google Scholar

[11] V. Morillon, F. Debeaufort, G. Blond, M. Capelle, A. Voilley: Cri. Rev. Food Sci. Nut. Vol 42 (2002), p.67.

Google Scholar

[12] B. Bravin, D. Peressini, A. Sensidoni: J. Food Eng. Vol 76 (2006), p.280.

Google Scholar

[13] J. -A. Quezada Gallo, F. Debeaufort, F. Callegarin, A. Voilley: J. Membrane Sci. Vol 180 (2000), p.37.

Google Scholar

[14] M.A. García, M.N. Martino, N.E. Zaritzky: J. Food Sci. Vol 65 (2006), p.941.

Google Scholar

[15] C. Zhang, Y. Ma, K. Guo, X. Zhao: J. Agric. Food Chem. Vol 60 (2012), p.2219.

Google Scholar

[16] L.H. Cheng, A. Abd Karim, C.C. Seow: Food Chem. Vol 107 (2008), p.411.

Google Scholar

[17] D. Tapia-Blacido, A.N. Mauri, F.C. Menegalli, P.J.A. Sobral, M.C. Anon: J. Food Sci. Vol 72 (2007), p. E293.

Google Scholar

[18] N. Diftis, V. Kiosseoglou: Food Chem. Vol 81 (2003), p.1.

Google Scholar

[19] J. Gonzalez-Gutierrez, P. Partal, M. Garcia-Morales, C. Gallegos: Bioresource Technol. Vol 101 (2010), p. (2007).

Google Scholar

[20] ASTM D 882-01, Annual Book of ASTM Standards, American Society for Testing and Matericals, Philadelphia, PA (2001).

Google Scholar

[21] ASTM E 96-93, Annual Book of ASTM Standards, American Society for Testing and Matericals, Philadelphia, PA (1993).

Google Scholar

[22] A. Jiménez, M.J. Fabra, P. Talens, A. Chiralt: Food Hydrocolloid. Vol 26 (2012), p.302.

Google Scholar

[23] Y. Zahedi, B. Ghanbarzadeh, N. Sedaghat: J. Food Eng. Vol 100 (2009), p.102.

Google Scholar

[24] Y. Jiang, C.H. Tang, Q.B. Wen, L. Li, X.Q. Yang: Innov. Food Sci. Emerg. Technol. Vol 8 (2007), p.218.

Google Scholar

[25] L.C. Bertan, P.S. Tanada, A.C. Siani, C.R.F. Grosso: Food Hydrocolloid. Vol 19 (2005), p.73.

Google Scholar

[26] L. Yang, A.T. Paulson: Food Res. Int. Vol 33 (2000), p.571.

Google Scholar