An Adjustable Inertia Balance Support for High-Speed Scanning Probe Microscope

Article Preview

Abstract:

An adjustable inertia balance support is proposed to counterbalance the inertial force from the actuators for high performance scanning probe microscope. The adjusting method is based on voltage proportion control. In contrast with traditional method that adding or removing mass, it is very convenient to adjust to minimize the inertial force transmitted to the supporting base. It may have a promising application on the current inertia balance support structure, which is used in some high-speed scanning probe microscope. What is more, it has a very good compatibility with current structure.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 1061-1062)

Pages:

735-738

Citation:

Online since:

December 2014

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] T. Ando, High-speed atomic force microscopy coming of age, Nanotechnology, vol. 23, no. 6, p.062001, Feb 17, (2012).

DOI: 10.1088/0957-4484/23/6/062001

Google Scholar

[2] T. Ando, T. Uchihashi, and T. Fukuma, High-speed atomic force microscopy for nano-visualization of dynamic biomolecular processes, Progress in Surface Science, vol. 83, no. 7-9, pp.337-437, (2008).

DOI: 10.1016/j.progsurf.2008.09.001

Google Scholar

[3] C. Gerber, and H. P. Lang, How the doors to the nanoworld were opened, Nature nanotechnology, vol. 1, no. 1, pp.3-5, (2006).

DOI: 10.1038/nnano.2006.70

Google Scholar

[4] Y. Yong, and S. Mohemani, Design of an Inertially Counterbalanced Z-Nanopositioner for High-Speed Atomic Force Microscopy, IEEE TRANSACTIONS ON NANOTECHNOLOGY, vol. 12, no. 2, p.137, (2013).

DOI: 10.1109/tnano.2012.2233749

Google Scholar

[5] Y. K. Yong, S. O. Moheimani, B. J. Kenton et al., Invited review article: high-speed flexure-guided nanopositioning: mechanical design and control issues, Rev Sci Instrum, vol. 83, no. 12, p.121101, Dec, (2012).

DOI: 10.1063/1.4765048

Google Scholar

[6] B. J. Kenton, and K. K. Leang, Design and control of a three-axis serial-kinematic high-bandwidth nanopositioner, Mechatronics, IEEE/ASME Transactions on, vol. 17, no. 2, pp.356-369, (2012).

DOI: 10.1109/tmech.2011.2105499

Google Scholar

[7] B. J. Kenton, A. J. Fleming, and K. K. Leang, Compact ultra-fast vertical nanopositioner for improving scanning probe microscope scan speed, Rev Sci Instrum, vol. 82, no. 12, p.123703, Dec, (2011).

DOI: 10.1063/1.3664613

Google Scholar

[8] A. J. Fleming, B. J. Kenton, and K. K. Leang, Bridging the gap between conventional and video-speed scanning probe microscopes, Ultramicroscopy, vol. 110, no. 9, pp.1205-14, Aug, (2010).

DOI: 10.1016/j.ultramic.2010.04.016

Google Scholar

[9] T. Fukuma, Y. Okazaki, N. Kodera et al., High resonance frequency force microscope scanner using inertia balance support, Applied Physics Letters, vol. 92, no. 24, p.243119, (2008).

DOI: 10.1063/1.2951594

Google Scholar

[10] G. E. Fantner, G. Schitter, J. H. Kindt et al., Components for high speed atomic force microscopy, Ultramicroscopy, vol. 106, no. 8-9, pp.881-7, Jun-Jul, (2006).

DOI: 10.1016/j.ultramic.2006.01.015

Google Scholar

[11] T. Ando, N. Kodera, D. Maruyama et al., A High-Speed Atomic Force Microscope for Studying Biological Macromolecules in Action, Japanese Journal of Applied Physics, vol. 41, no. Part 1, No. 7B, pp.4851-4856, (2002).

DOI: 10.1143/jjap.41.4851

Google Scholar

[12] T. Ando, N. Kodera, E. Takai et al., A high-speed atomic force microscope for studying biological macromolecules, Proc Natl Acad Sci U S A, vol. 98, no. 22, pp.12468-72, Oct 23, (2001).

DOI: 10.1073/pnas.211400898

Google Scholar