A Water-Solution Fluorescence Probe for H2O2 Based on Naphthalimide Derivative

Article Preview

Abstract:

A water-soluble fluorescent probe was described for detecting hydrogen peroxide with the naphthalimide derived as fluorophore and boronate moiety as recognition unit. The probe was developed as a turn-on fluorescent chemosensor with fast, high selectivity and sensitivity toward H2O2 over other biological reactive oxygen species. What is more, the probe was linear response to H2O2 concentration in the range of 2.5×108 – 3.2×10−5 M and lower detection limit down to 12 nM (S / N = 3) was obtained.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 1061-1062)

Pages:

978-982

Citation:

Online since:

December 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. M. Thompson Science, 256(1992) 1157-1165.

Google Scholar

[3] H. Ohshima, M. Tatemichi, T. Sawa. Arch Biochem Biophys, 417(2003) 3-11.

Google Scholar

[4] M. P. Mattson. Nature, 430(2004) 631-639.

Google Scholar

[5] J. P. Fruehauf, F. L. Meyskens. Cancer Res., 13(2007) 789-794.

Google Scholar

[6] M. Xu, B. R. Bunes, L. Zang. ACS Appl. Mater. Interfaces, 3(2011) 642-647.

Google Scholar

[7] H. W. Lin, K. S. Suslick. J. Am. Chem. Soc., 132(2010) 15519-15521.

Google Scholar

[8] N. V. Klassen, D. Marchington, H. C. E. McGowan. Anal. Chem., 66(1994) 2921-2925.

Google Scholar

[9] P. X. Yuan, Y. Zhuo, Y. Q. Chai, et al. Electroanalysis, 20(2008) 1839-1844.

Google Scholar

[10] W. Z. Jia, M. Guo, Z. Zheng, et al. Electroanalysis, 20(2008) 2153-2157.

Google Scholar

[11] S. Oszwałdowski, R. Lipka, M. Jarosz. Anal. Chim. Acta, 421(2000) 35-43.

Google Scholar

[12] G. Shan, S. Zheng, S. Chen, et al. Colloids Surf. B, 102(2013) 327-330.

Google Scholar

[13] O. Woleis, A. D¨urkop, M. Wu, et al. Angew. Chem. Int. Ed., 41(2002) 4495-4498.

Google Scholar

[14] X. H. Shu, Y. Chen, H. Y. Yuan, et al. Anal. Chem., 79(2007) 3695-3702.

Google Scholar

[15] A. R. G. C. Lippert, V. D. Bittner, C. Chang. J. Acc. Chem. Res., 44(2011) 793-804.

Google Scholar

[16] Y. Hitomi, T. Takeyasu, T. Funabiki, et al. Anal. Chem., 83(2011) 9213-9216.

Google Scholar

[17] X. L. Sun, S. Y. Xu, S. E. Flower. Chem. Commun., 49(2013) 8311-8313.

Google Scholar

[18] F. B. Yu, P. Li, P. Song, et al. Chem. Commun., 48(2012) 4980-4982.

Google Scholar

[19] B. C. Dickinson, C. J. Chang. J. Am. Chem. Soc., 130(2008) 9638-9639.

Google Scholar

[20] B. D'Autréaux, M. B. Toledano. Nat. Rev. Mol. Cell Biol., 8(2007) 813-824.

Google Scholar

[21] J. Xu, Q. Li, Y. Yue, et al. Biosensors and Bioelectronics, 56(2014) 58-63.

Google Scholar

[22] Y. Y. Qian, L. Xue, D. X. Hu, et al. Dyes and Pigments, 95(2012) 373-376.

Google Scholar

[23] J.F. Zhang, Y. Zhou, J. Yoon, Y. Kim, S.J. Kim, J.S. Kim, Org. Lett., 12(2010) 3852-3855.

Google Scholar

[24] Z. Zhou, M. Yu, H. Yang, K. Huang, F. Li, T. Yi, C. Huang, Chem. Commun., (2008) 3387-3389.

Google Scholar

[25] J. M. Shi, Y. J. Wang, X. L. Tang, et al. Dyes and Pigments, 100 (2014) 255-260.

Google Scholar

[26] T. Y. Liu, X. F. Zhang, Q. L. Qiao, et al. Dyes and Pigments, 99 (2013) 537-542.

Google Scholar

[27] L. Jia, Y. Zhang, X. Guo, X. Qian, Tetrahedron Lett., 45 (2004) 3969-3973.

Google Scholar

[28] W. Su, W. H. Li, J. Li, et al. Tetrahedron, 68(2012) 5363-5367.

Google Scholar