Hydrothermal Stability of Ordered Mesoporous Titanosilicate Materials Prepared at Room Temperature

Article Preview

Abstract:

A study of hydrothermal stability, performed in boiling water under static conditions, of MCM-41 materials containing different titanium content, prepared by direct synthesis at ambient temperature and pressure, using tetraethoxysilane, titanium ethoxide and octadecyltrimethyl- ammonium bromide is presented. The behaviour is compared with pure silica grades prepared by a similar procedure. The samples were characterised by X-ray diffraction, adsorption of nitrogen at 77K and diffuse reflectance UV–Vis spectroscopy. It was found that the stability improves as the amount of titanium increases and that Ti-MCM-41 samples prepared with Si/Ti≤50 are significantly stable. After 12h in boiling water the pore size uniformity was practically maintained and only a small decrease in pore volume (5-9%), total surface area (2-7%) and mesopore width (3%) and a slight increase in pore wall thickness (3-6%) occurred. In contrast, some degradation of the MCM-41 structure for the pure silica and the lower Ti content (Si/Ti=100) samples was observed with the effect being less pronounced for the latter. The higher hydrothermal stability of titanium substituted samples is probably correlated with a higher degree of polymerisation of the pore walls and with the presence of extra framework titanium.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

63-70

Citation:

Online since:

April 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] C.T. Kresge, M. E Leonowicz, W.J. Roth, J.C. Vartuli and J.S. Beck: Nature Vol. 359 (1992), p.710.

Google Scholar

[2] J.S. Beck, J.C. Vartuli, W.J. Roth, M.E. Leonowicz, C.T. Kresge, K.D. Schmidt, C.T. -W. Chu, D.H. Olson, E.W. Sheppard, S.B. McCullen, J.B. Higgins and J.C. Schlenker: J. Am. Chem. Soc. Vol. 114 (1992), p.10834.

DOI: 10.1021/ja00053a020

Google Scholar

[3] A. Corma: Chem. Rev. Vol. 97 (1997), p.2373.

Google Scholar

[4] M. Lindén, S. Schacht, F. Schüth, A. Steel and K. Unger: J. Porous Mater. Vol. 5 (1998), p.177.

Google Scholar

[5] G. Øye, J. Sjöblom and M. Stöcker: Adv. Colloid Interface Sci. Vol. 89-90 (2001), p.439.

Google Scholar

[6] F. Di Renzo, A. Galarneau, P. Trens and F. Fajula, in: Handbook of Porous Solids, edtied by F. Schüth, K.S.W. Sing, J. Weitkamp, Wiley-VCH, Weinheim (2002), p.1311.

DOI: 10.1002/9783527618286.ch21a

Google Scholar

[7] K. Cassiers, T. Linssen, M. Mathieu, M. Benjelloun, K. Schrijnemakers, P. Van Der Voort, P. Cool and E.F. Vansant: Chem. Mat. Vol. 14 (2002), p.2317.

DOI: 10.1021/cm0112892

Google Scholar

[8] A. Tagushi and F. Schüth: Micropor. Mesopor. Mater. Vol. 77 (2005), p.1.

Google Scholar

[9] G. Øye, W.R. Glomm, T. Vrålstad, S. Volden, H. Magnusson, M. Stöcker and J. Sjöblom: Adv. Coll. Interf. Sci. Vol. 123-126 (2006), p.17.

DOI: 10.1016/j.cis.2006.05.010

Google Scholar

[10] P.T. Tanev, T. Chibwe and J. Pinnavaia: Nature Vol. 368 (1994), p.321.

Google Scholar

[11] A. Corma, M.T. Navarro and J.P. Pariente: J. Chem. Soc. Chem. Commun. (1994), p.147.

Google Scholar

[12] J.M. Kim and R. Ryoo: Bull. Korea. Chem. Soc. Vol. 17 (1996), p.66.

Google Scholar

[13] M. Broyer, S. Valange, J.P. Bellat, O. Bertrand, G. Weber and Z. Gabelica: Langmuir Vol. 18 (2002), p.5083.

DOI: 10.1021/la0118255

Google Scholar

[14] T. Mori, Y. Kuroda, Y. Yoshikawa, M. Nagao and S. Kittaka: Langmuir Vol. 18 (2002), p.1595.

Google Scholar

[15] M. Luechinger, L. Frunz, G.D. Pirngruber and R. Prins: Micropor. Mesopor. Mater. Vol. 64 (2003), p.203.

Google Scholar

[16] L.Y. Chen, S. Jaenicke and G. K. Chuah: Micropor. Mater. Vol. 12 (1997), p.323.

Google Scholar

[17] S. -C. Shen and S. Kawi: J. Phys. Chem. B Vol. 103 (1999), p.8870.

Google Scholar

[18] F. -S. Xiao, Y. Han, Y. Yu, X. Meng and S. Wu: J. Am. Chem. Soc. Vol. 124 (2002), p.888.

Google Scholar

[19] P.A. Russo, M.M.L. Ribeiro Carrott and P.J.M. Carrott: Colloids Surf: Physicochem Eng Aspects Vol. 310 (2007), p.9.

Google Scholar

[20] R. Ryoo and S. Jun: J. Phys. Chem. B Vol. 101 (1997), p.317.

Google Scholar

[21] K.A. Koyano, T. Tatsumi, Y. Tanaka and S. Nakata: J. Phys. Chem. B Vol. 101 (1997), p.9436.

Google Scholar

[22] R. Mokaya: J. Phys. Chem. B Vol. 103 (1999), p.10204.

Google Scholar

[23] L. Chen, T. Horiuchi, T. Mori and K. Maeda: J. Phys. Chem. B Vol. 103 (1999), p.1216.

Google Scholar

[24] J.M. Kisler, M.L. Gee, G.W. Stevens and A.J. O`Conner: Chem. Mater. Vol. 15 (2003), p.619.

Google Scholar

[25] C.H. Rhee and J. S. Lee: Catal. Lett. Vol. 40 (1996), p.261.

Google Scholar

[26] M.M.L. Ribeiro Carrott, C. Galacho, F.L. Conceição and P.J.M. Carrott: Stud Surf Sci Catal Vol. 160 (2007), p.567.

Google Scholar

[27] C. Galacho, M.M.L. Ribeiro Carrott and P.J.M. Carrott: Micropor. Mesopor. Mater. Vol. 100 (2007), p.312.

Google Scholar

[28] C. Galacho, M.M. L Ribeiro Carrott and P.J.M. Carrott: Micropor Mesopor Mater. Vol. 108 (2008), p.283.

Google Scholar

[29] C. Galacho, M.M. L Ribeiro Carrott, P.J.M. Carrott and J.N. Valente Nabais: Materials Science Forum Vol. 587-588 (2008), p.473.

DOI: 10.4028/www.scientific.net/msf.587-588.473

Google Scholar

[30] M. Grün, K.K. Unger, A. Matsumoto and K. Tsutsumi: Micropor. Mesopor. Mater. Vol. 27 (1999), p.207.

Google Scholar

[31] F. Rouquérol, J. Rouquérol and K.S.W. Sing, in: Adsorption by Powders and Porous Solids, Academic Press, London (1999).

Google Scholar

[32] M. Kruk, M. Jaroniec and A. Sayari: Langmuir Vol. 13 (1997), p.6267.

Google Scholar

[33] E.P. Barrett, L.G. Joyner and P.P. Halenda: J. Am. Chem. Soc. Vol. 73 (1951), p.373.

Google Scholar

[34] P. Ratnasamy, D. Srinivas and H. Knözinger: Adv. Cat. Vol. 48 (2004), p.1.

Google Scholar

[35] L. Marchese, E. Gianotti, V. Dellarocca, T. Maschmeyer, F. Rey, S. Coluccia and J.M. Thomas: Phys. Chem. Chem. Phys. Vol. 1 (1999), p.585.

DOI: 10.1039/a808225a

Google Scholar

[36] W. Guo, X. Li and X.S. Zhao: Micropor Mesopor Mater. Vol. 93 (2006), p.285.

Google Scholar

[37] J.F. Pérez-Arévalo, J.M. Domínguez, E. Terrés, A. Rojas-Hernández and M. Miki: Langmuir Vol. 18 (2002), p.961.

DOI: 10.1021/la010742l

Google Scholar

[38] N. Igarashi, K.A. Koyano, Y. Tanaka, S. Nakata, K. Hashimoto and T. Tatsumi: Micropor. Mesopor. Mater. Vol. 59 (2003), p.43.

Google Scholar

[39] P.A. Russo, Ribeiro M.M.L. Carrott, A. Padre-Eterno, P.J.M. Carrott, P.I. Ravikovitch and A.V. Neimark: Micropor Mesopor Mater. Vol. 103 (2007), p.82.

DOI: 10.1016/j.micromeso.2007.01.032

Google Scholar

[40] M.M.L. Ribeiro Carrott, A.J.E. Candeias, P.J.M. Carrott and K.K. Unger: Langmuir Vol. 15 (1999), p.8895.

DOI: 10.1021/la9904915

Google Scholar